
Why Do Programmers Do What They Do?
A Theory of Influences on Security Practices

Lavanya Sajwan, James Noble, Craig Anslow
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

sajwanlav@gmail.com {kjx,craig}@ecs.vuw.ac.nz

Robert Biddle
School of Computer Science

Carleton University
Ottawa, Canada

robert.biddle@carleton.ca

Abstract—Technologies are continually adapting to match
ever-changing trends. As this occurs, new vulnerabilities are ex-
ploited by malicious attackers and can cause significant economic
damage to companies. Programmers must continually expand
their knowledge and skills to protect software. Programmers
make mistakes, and this is why we must interpret how they
implement and adopt security practices. This paper reports on
a study to understand programmer adoption of security prac-
tices. We identified a theory of inter-related influences involving
programmer culture, organizational factors, and industry trends.
Understanding these decisions can help inform organizational
culture and education to improve software security.

I. INTRODUCTION

Software is now ubiquitous across many industries [6].
Programmers have to ensure that the security processes that
they implement are resilient to attacks. Lack of attack pre-
vention can cause leakage of sensitive information, significant
economic damage and danger to massive numbers of users
and employees. Consequently, this opens businesses, clients
and end-users to exploitation by threat actors.

When security and privacy issues do occur in real-world
scenarios, programmers often get blamed first as it is often
faults in their implementation which introduce vulnerabilities
[8]. Programmers do make mistakes, and lacking infrastruc-
tural safeguards [8], security is their own responsibility. Se-
curity mechanisms often have increased complexity, which
makes them challenging to understand and use, and many
programmers lack sufficient motivation and training [4].

In 2019 New Zealand (NZ) experienced a significant se-
curity breach within the Tū Ora Compass Health (Tū Ora)
Primary Health Organisation (PHO) [16]. Tū Ora is one of
the largest PHOs in the country, and it governs the greater
Wellington region [16]. Personal information of up to one
million New Zealanders were exposed, and the effects of this
are ongoing [16]. Costs have been high in attempts to mitigate
any effects to the public. Dedicated call centres have been set-
up as well as dedicated mental health lines [16], [17].

This paper reports on a study to investigate how program-
mers implement and adopt security practices in the work they
do, in order to develop an understanding of the influences
involved. The study used Grounded Theory, a method which
aims to establish a theory when there is none, where the
method has been used for qualitative data analysis in software
engineering [10], [11], [13]. Interviews were used to collect
the data, and we then analysed and developed a theory on
influences on security practices in the professional workplace.
This study builds upon earlier research on programmer security
practices [1], [18], [24].

Three key research questions we began with were:

RQ1: What security challenges do programmers face?
RQ2: What security training do programmers have?
RQ3: How do programmers adopt secure software prac-

tices?

Participants were recruited by posting on tech-related
groups, mailing lists, and also using personal contacts. 15
semi-structured interviews were conducted on the topic of their
security practices while programming. The participants were
all programmers in NZ in varying stages of their careers to
allow for a broad range of responses and a case study relevant
to NZ. Our findings offer a new perspective on the psychology
of programmers which we suggest might inform education and
the workplace.

II. RELATED WORK

This study aims to gather data in order to ultimately form
a theory on the influences of programmer security practices
in NZ. We begin by reviewing the on security and software
development practices in NZ and more generally.

A study run by Aura Security showed a 10% increase in
cyber-attacks on NZ businesses between the years of 2018-
2019 [2]. In NZ, the rise is attributed to the digitisation of day-
to-day way-of-life; as new technologies continually develop,
there is an urgency to deploy products. There is a lot of
pressure on programmers to finalise these products, and the
deviation of attention to the finished output means that there
are many new threats to security [5]. Malicious attackers are
also becoming more sophisticated. Individual threat attackers
now seem to have the same knowledge and resources as nation-
backed threat actors [5]. Areas of improvement identified by
the NZ government are as follows:

Workshop on Usable Security and Privacy (USEC) 2021
7 May 2021, Auckland, New Zealand
ISBN 1-891562-73-8
https://dx.doi.org/10.14722/usec.2021.23012
www.ndss-symposium.org

1) Cyber security aware and active citizens: Increased
regular awareness campaigns and education oppor-
tunities for the public in regards to best personal
security practices.

2) Strong and capable cybersecurity workforce and
ecosystem: Increased promotion and support of the
development of the cyber industry in NZ.

3) Internationally active: Detect and prevent any
breaches as well as proactively maintaining inter-
national relationships regarding information security
and participating in any rule reforms.

4) Resilient and responsive NZ: Supporting infras-
tructure, businesses, charity organisations, commu-
nity organisations, individuals in improving security
capabilities and resilience.

5) Proactively tackle cybercrime: Increasing support
to impacted parties, preventing and encouraging re-
porting of any cybercrimes.

These five principles are planned to inform improvement
over the period to 2023 [5]. It is expected that aspects of these
will influence the security practices that programmers use in
NZ industry. Without a focus on security while programming,
there is a lack of confidence in the resulting security, resulting
in the lack of use and waste of time, effort and money.
Using unsecured programs poses significant adverse impacts
to businesses and individuals.

Kirk and Tempero [14] looked at “developing and applying
a range of software productivity techniques and tools to
enhance the performance of the NZ software industry.” Their
survey aimed to understand the practices used by industry and
in the findings can be used to make recommendations on best-
use development practices for organisations. The key findings
were:

1) Organisations and individuals do not follow standard
agile process models.

2) NZ is generally more implementation-focused in
software development. There is an emphasis on this
over other aspects of the software development life-
cycle such as security and testing.

3) Decision-making is a collaborative effort with indi-
viduals involved in different stages and traits of the
development life-cycle.

4) While most New Zealanders state they are “agile”
this is not supported as frequent contact with clients
and stakeholders is not upheld. However, there is a
highly iterative aspect to the work individuals do on
projects which do maintain agile principles.

5) There is a weakness in requirements gathering
which results in a widely noticed lack of clarity on
scope details.

6) This point also relates to point 2, there is a noticed
severe lack of code quality whether this is in design,
reviewing and testing stages, or with general coding
best practices.

7) Most do not develop around tools such as libraries -
rather they use them as a support. This can be derived
as not being “best-practice” and can be more time-
consuming.

Not much was asked specific to security, but finding

number 6 links to poor practices around secure programming.
The report had a limitation in which it did not make any
recommendations at this stage, but it did mention that these
findings can be used by organisations to obtain a view of the
software practices in NZ. From here, organisations can make
their own decisions on what to focus on to better their specific
operations.

In a survey with software developers in North America
[1], Assal and Chiasson investigated the human behaviours
and motivations surrounding factors of software security. The
authors specified a series of questions targeted toward software
developers through an online survey. The research examined
responses to support the professional development of program-
mers further, both in theory and practice. The results outlined
the following common groups:

1) Work Motivation: Developers did not lack moti-
vation in their job. They performed based on self-
determination.

2) Understanding of software security: Developers
had a sound understanding of software security. They
grasped the importance of securing technical work
and discussed various methods of doing so and spec-
ifying at what stages in the project life-cycle they
should implement these based on best practices.

3) Security Issues: A majority of the participants be-
lieved their software could be compromised, despite
being comfortable with the approaches to protecting
the software. The majority has also experienced a
security issue, whether that be a breach or vulnerable
code.

The overarching theme was that the developers were not
purposefully ignorant about maintaining security practices —
the majority were proactive and willing to learn. However,
it was the importance of functionality and lack of ongoing
support from organisations which made working towards more
secure software challenging.

Weir et al. [25] identified that security is more reliant
on developers, but that the developers are not providing the
security that is needed. The authors interviewed participants
in order to obtain data so they can find ways to “help
programmers themselves to improve security given existing
constraints”. The two major findings were:

1) Developer security is based on challenges in order to
motivate better practice. These challenges are often
fun adversary questioning usually to do with review
and advisory. This emerged as the core theory as
it was interwoven through most of the participant
responses.

2) Six assurance techniques were identified in being the
most helpful; threat assessment, stakeholder negotia-
tion, configuration review, vulnerability scan, source
code review and penetration testing. They all help
provide software security.

Tahaei and Vaniea [23] conducted an extensive literature
review of 49 publications on security studies with participants
who were software developers. There were eight significant
themes in the results shown by the authors. They were

2

“Organisations and Context”, “Structuring Software Develop-
ment”, “Privacy and Data”, “Third Party Updates”, “Security
Tool Adoption”, “Application Programming Interfaces (APIs),
“Programming Languages” and “Testing Assumptions”. We
were particularly interested in the theme “Organisations and
Context”, which focuses on how developers were influences
by those factors. The authors discuss how dedicated security
teams do see security as a priority, but their influence is
typically small on the overall project.

III. METHODOLOGY

A. Grounded Theory

The research method of our study was based on Grounded
Theory as first articulated by Glaser and Strauss [7]. This
approach was originally created for taking a fresh look at
situations with minimal focus from existing theory, with the
intent to identify new theory grounded in the sampled data
[11]. The emergent theory is expected to be explanatory,
focusing on describing how the data informs answers to the
research questions. As such, the theory should also be based
on the collected responses and observations, rather than pre-
conceived ideas. We chose this approach in hope of finding a
new perspective on the issue of software development security
practices. Throughout the study, we kept in mind the ACM
SIGSOFT Grounded Theory recommendations: exploration of
a broad area of study without deliberate framing, an iterative
data analysis method, and ensuring findings have the support
from the data itself [21].

Our University’s Human Ethics Committee approved our
study, and we then followed the steps advised for Grounded
Theory. We contacted potential participants from the popu-
lation of interest, asking their consent for a semi-structured
interview. We then took an iterative approach conducting
interviews, and analyzing the results to refine the questions
for later interviews. This refinement of questions enabled
delving deeper into the traits of the emerging theory. When
interviews cease to reveal new findings, “saturation” is said to
be achieved, and allowed articulation of our grounded theory.

Initially, we imagined getting key evidence about technical
security practices of programmers. However, we identified as
early as the third interview that technical security programming
practices were not as influential as we expected, and the
interview questions were adapted to match this gradual shift in
focus. This led to the new perspective we found on the topic,
as we describe in the following sections.

B. Data Collection

A recruitment post and a web-page was shared to NZ
mailing lists and websites for software developers, and also
personal contacts. We also used the “snowballing” approach,
where participants helped with recruitment by reaching out to
others in the industry and telling them about the study. We
sampled participants which had varying job titles, years of
experience, and were in a range of different industry sectors.
15 interviews were conducted with participants across NZ,
with participants from 14 different organisations. The diversity
within the participants allowed for connections to be made
across a broader range of people.

Our initial questions were developed based on a small pilot
study run with recent graduates from our University. This small
pilot study was essential in providing some more clarity on the
interview process, allowed practice in conducting interviews on
the topic, and helped begin the continuous process of refining
questions.

Due to 2020 being a disruptive year because of COVID-19,
interviews were predominantly conducted over Zoom. Consent
from the participants was obtained through an email response
as per Human Ethics committee approval. Interviews ran for
periods ranging between 30-90 minutes. A summary of the
participants is shown in I. Four participants had greater than
15 years experience (expert), four had 10-15 years experience
(senior), four had between 2-5 years experience (intermediate),
and three less than 2 years experience (graduate).

TABLE I. PARTICIPANTS ALIASES AND SUMMARY.

ID G Role Organisation Years

P1 M Enterprise Architect
and Domain Lead Government Agency >15

P2 M Principal Product
Architect

Software Development
Company >15

P3 M Senior Security
Architect Financial Technology 10-15

P4 M Senior Software
Engineer

Software Development
Company >15

P5 M Software Developer Financial Technology <2

P6 F Level 2 Security
Analyst

Information Technology
Services 2-5

P7 M Site Reliability
Engineer Financial Technology <2

P8 F DevOps Engineer Software Integration
Services <2

P9 M Portfolio Architect Government Agency 10-15

P10 F Full-stack Software
Developer Utilities Company 2-5

P11 F Cloud Engineer Financial Technology 2-5

P12 F Consultant
(Cloud Engineering) Consultancy Firm 2-5

P13 M Development Manager
and Technical Lead Financial Technology 10-15

P14 M Senior Software Engi-
neer

Information Technology
Services 10-15

P15 M Business Rule Consul-
tant

Government Agency >15

C. Data Analysis

We transcribed each interview and analysed the text using
the Qualitative Data Analysis software tool Nvivo1 We aug-
mented the interview text with memos describing our thoughts
on the content. We then conducted selective coding [7]. Key
points from each transcript were paired with a simplified
summary of the points [11]. The constant comparison method
was used, and this is where codes were compared to others
from within the same interview and also with other interviews.
These comparisons continued to occur as more interviews were
conducted and were further narrowed to become categories for
the emergent theory. Examples of the codes from the study are
shown in Table II. The different columns show the constant
comparison method which occurs to match raw data to codes
which then are narrowed to concepts and ultimately categories.

Theoretical saturation is the point in a Grounded Theory
study where no new significant information is being added

1NVivo qualitative data analysis software; QSR International Pty Ltd.
Version 12, 2018.

3

TABLE II. SAMPLE OF SELECTIVE CODING

Raw Data Code Concept Category
. . . languages used by the
company

Already in-use Established Process Organisation

. . . yeah we just use kan-
ban across the company

Already in-use Project Manage-
ment

Organisation

. . . cloud is the newer
process

Cloud is get-
ting popular

Improving Process Trends

to inform the emergent theory. This started to occur during
interviews from P10 to P15, after which we stopped conducting
interviews. Theoretical memos were written throughout this
coding process to articulate relationships between concepts and
categories.

The emergent theory we identified consists of three main
categories: Cultural Factors, Organisational Factors, and Indus-
try Trends (see Figure 1). In the following sections we present
each of these in turn. We then identify the relationships be-
tween them, and finally offer a discussion and our conclusions.

IV. CULTURAL FACTORS

This category involves the effect of culture we see in
groups of individuals. We specifically mean the small-scale
culture local to the workplace, with the characteristics that
programmers have relating to security: their knowledge sharing
customs but also their attitudes, biases, and experience.

A. Knowledge Sharing

Knowledge sharing is the deliberate exchange of informa-
tion [9], and it was highly regarded among the participants.
Participants identified communication between team-mates as
being a fundamental way to learn better and newer security
practices. These opportunities are taken within teams and occur
when pair-programming, or when merely asking questions.

Often vital knowledge sharing moments happened in pass-
ing. When programmers were stuck with using a library,
framework or even learning a new language nuance, they
appreciated the ability to turn to the person next to them and
get help. “I like that people come to me when they need help.
I think that is the best way for everyone to learn, even me!” -
P3 “. . . we’ve got a really flat structure, if I needed to I could
pretty much directly ping someone. . . ” - P10

Participant P8 declared that the open communication
streams between people across business and experiences made
it easier to obtain answers. Walking between desks to other
teams and also sending anyone email regardless of hierarchy
helped facilitate these exchanges. These exchanges were often
more attainable in smaller organisations where individuals
were more familiar with each other P5, P8, P9.“It’s a lot
easier when there are only seven people in my company.” - P8

This is harder to maintain in larger organisations. “You
don’t do technical inductions which is quite irritating because
you do have to know people and you do have to find people
who know stuff” - P11 “I think bigger companies have very
secure processes, and it’s very need-to-know and there is a
very clear divide, and no one is afraid to say that it’s above
your clearance. In smaller companies the lines are a little
bit blurred on clearance. . . I think [at] the size of that is

fine because there is communication. . . I think security is far
more approachable in a smaller company; it seems far more
reasonable and accessible.” - P8

B. Biases and attitudes

Participants had strong feelings about how security prac-
tices aligned with their work, but different people had different
feelings. Those who were strictly developers [P4, P5, P7] typ-
ically found security concerns a deterrent to completing their
work on time. “I believe that tasks kind of [get] pushed back a
month or two purely because security teams get quite busy on
an ad-hoc basis and hiding something, removing something,
[adding something], can understandably be a bigger thing,
even if it is one manager asking for access. . . Now we are
aware of the lead times that those kind of security tasks can
take and so we do plan for those, but I’ll also probably say a
lot of those times we don’t plan enough” - P7

However, others with broader responsibilities had a more
positive attitude towards managing security. “. . . It is going
to take time, my point was we can manage it nicely without
confusing people” - P1 “. . . when a change happens that they
don’t like, there have been people who have straight up left and
quit their jobs. . . their empire is DESTROYED!” - P11 “For
me, I know that it is important so I’m willing to compromise
on that on a personal level, but I can get where that someone
that it is not their thing, they can see it as a hindrance” - P12

One participant P11 acknowledged the personal relation-
ships within the workplace as contributing to biases. In particu-
lar, They referred to “tech bro-culture”. They gave the example
of a vendor-client relationship that they had witnessed where
the vendor accepted any requests into production because of
the close friendship with the client. The client had not given
any comments and had caused the build pipeline to fail many
times, and it was still was not working as the vendor continued
to approve changes. This “tech bro-culture” also makes people
have a view that asking questions makes you seem lesser, an
outsider, and this discouraged necessary communication.

C. Experience

Experience pertains to the level of expertise an individual
has in the industry. This was not only measured by the number
of years that participants had worked, but also whether they
had worked in a range of organisations and projects. One
participant P11 is an example of this. They only have 2-5
years of experience in the industry but have worked in multiple
government and private organisations during this time. They
regularly advise the senior members of their team. “. . . Which
is a strange dynamic because they’re both seniors. . . Yeah, I’m
a lot younger, I’m the only woman and I have a lot more
experience than they do in the specific stuff that we’re working
in right now. And a lot of where my skill-set comes in is like
picking up things up quickly because I have moved around a
lot, I have done a whole bunch of random stuff” - P11.

Almost all the participants identified significant differences
in how less experienced and more experienced individuals deal
with security practices. Often less experienced team members
are wanting and willing to learn, but still are lacking in the
ability to identify critical threats and risks which a more
experienced team member is more versed at doing. “New team

4

members, I find, that they’re kinda charged-up, ready-to-go,
and that they want to prove themselves. I do find the more
experienced people are a little more humble and they’re a little
bit more set-back. . . it’s a bit more of a different energy-vibe;
you see the new people come in, so ready to learn and they
want to do security and then you get the people who have been
there for ages like oh yeah that’s easy and just do it.” - P6

V. ORGANISATIONAL FACTORS

This category involves the influence of organisation struc-
ture and practices to security. The elements within this category
are the parts of an organisation which affected programmer
choices: in particular, project management techniques, and
security training techniques.

A. Project Management Techniques

Project management techniques get set by the choices of
more senior people in an organisation [13], [15]. Participants
indicated these project management techniques as affecting
how they approached security in their work. The three project
management techniques mentioned specifically were “water-
fall”, Agile (Kanban and Scrum), and DevOps.

Only one participant P10 said they used a waterfall
methodology, while other participants [P3, P4, P5, P7, P8,
P11, P12, P13, P15] referred to using either Agile or DevOps.
When managed correctly, the techniques benefited participants
a lot. It was regarded as more comfortable getting the security
teams involved throughout the process in a more DevOps
approach, and with an Agile approach each deliverable was
checked at the end of each sprint, but strict management styles
did not get enforced. “It is a major problem with the waterfall
type projects. . . . it’s slowly going out, but very slowly, and
they’ve left a lot of things behind, or rather forgotten to update
a bunch of processes to match this stuff. . . Most places that I’ve
worked, we do Agile, we do DevOps, but [also] not really. It’s
a whole thing.” - P11

A traditional waterfall-type management leaks through
however, and some participants felt that there is an emphasis
on security at the beginning and end of projects rather than
throughout. This was done as a means to reduce “tech-debt”
- P7, but does the opposite when programmers struggle to fix
multiple issues at the end. “I think that it takes the load off
developers so developers can just focus on building [a] good
application. I think the set-up right now [by having a separate
security team] is pretty good right now. I just say that it is
annoying putting the request through and them being slow” -
P10

Participants with more senior roles [P3, P4] did not like
the wave of DevOps management; they identified it as being
too time-consuming or just a fad. The feelings to do with
security were different as one was a developer P4 and one
was a security architect P3. The latter’s critique also stemmed
from a hatred of buzz-words when they mentioned DevSecOps,
a more security-specific iteration of DevOps project manage-
ment. “It’s just annoying and gets in the way of my work” - P4
“. . . I don’t like it. No one actually follows anything anyway,
and an ongoing security approach should be there already. . . ”
- P3

The project management techniques also influenced how
teams interacted with each other. With a DevOps approach,
the support from the security team was continuous, and talking
between teams occurred more often. Often a security person
was fully involved in the entire project; consequently, this
increased collaboration meant that security issues were being
identified earlier, not just near deadlines or after completion.
“The cross-functional teams, is how I’ve kind of been told
to refer to them, they’re really good. . . Anyway the point was,
yeah, a lot of it is around your organisational structure and
the way you form your teams. It’s a major problem with like
waterfall-type projects where you do like dev, and then you
do test and then you do security at the end, but that’s, it’s
slowly going out, but I mean like very slowly, and they’ve left
a lot of things behind, or rather forgotten to update a bunch
of processes to match this sort of stuff.” - P11

This does not often occur due to a lack of resources such
as skilled employees and money as different business units
charge for time. “Ideally that [would] be awesome, but you
have to pay all those people.” - P12

B. Security Training Techniques

Security training techniques and methods are chosen inter-
nally by the organisations. Most of the participants [P1, P2,
P3, P6, P7, P9, P10, P11, P12, P13, P14, P15] stated that they
had not obtained much prior exposure to security education.
This means the training that the organisations provide is vital
in educating developers. “I don’t have any formal education,
but I have worked in security roles in two other organisations”
- P2 “The closest thing really is [learning about] concurrency
[at uni] for the most part.” - P5 “I had one security paper
when I was studying” - P6 “No there were no security specific
papers [courses], if anything, it might be a handful of lectures
at uni” - P7

Organisation training methods were quite traditional. They
were more policy and protocol-related, and often employees
have to do readings, watch videos or listen to talks in the
office by either internal teams or external businesses. The
training techniques were more informative to-do of what to
watch out for rather than learning any practical mitigation
techniques. “There was some basic training done for certi-
fication. . . watching stupid videos like Kevin Mitnick” - P4

Often organisations did not expect employees to know the
policies and protocols, but are expected to know the technical
programming-side or should pick those up themselves. “It’s
kind of expected, we don’t do any formal coding security
training, we’ve got other general security training about data
and procedures, but nothing like technical related. . . I’ve done,
I’ve had some, listened to some talks throughout about general
security risks. They talk about you know, the different areas
that our company gets kind of attacked. More, of just of a
FYI.” - P7 “People assume that if you’re coming into these
roles you kind of understand this stuff. But I’ve seen it go so
wrong.” - P11

Personal training involves employees searching for non-
work organisation security training. This is encouraged in
some organisations, and a budget is put aside for employees.
Participants stated that they could ask to do their own training

5

at work using Linkedin videos or Pluralsight [P10, P11, P12,
P13]. “We get given a budget to go pick out what kind of
training we want to do.” - P6

While the subject of the solo-learning videos is more
technically focused, they are still theory-based. This is why
most participants identified that they learn best from talking
to other people in their teams as they can learn more technical
skills while applying existing knowledge. “I’m actually really
lucky I work with some great guys. I got paired up with another
guy and we sat through and scheduled out six weeks.” - P6
“I just ask and someone will help me out and they’ll teach
me. . . Yeah, I learn lots when we’re working on a chunk of
code together [pair programming]” - P10 “I think the best
training you can get is from your peers. . . ” - P14

There were two unique points brought up by participants
from the sample group which show a gradual change in
how organisations aim to educate programmers on security.
Participant P10 recalled the use of technical workshops with
an external company being a great way to learn how to program
more securely to protect applications. This method was a more
active approach than what had been described by others. They
stated it was similar to following live-coding during university
lectures. “I think at work actually, they also made us do a
workshop on SQL injection attacks and stuff and they made us
do a bunch of things and we actually had to follow along on
our own computers and that’s really the only way you learn
is by doing.” - P10

The other unique point was corporate “Hackathons” as a
new way of learning. These are events which the organisation
runs for its employees. Two participants [P13, P14] talked
positively about it as being fun and casual while also prompt-
ing people to learn concepts. “You can’t enforce it. . . when you
do that you that you’ve lost people. Hackathons are optional
and part of [good] culture”. - P14

The Hackathon topics would be centred around the or-
ganisation field (e.g. Fintech) in order to translate learnings
from these sessions to their current work. “We have our own
in-house, we call it Hackathon, you know, programme and
base-line programme where anybody [can join], it’s a kind
of mandatory training programme where everybody [will go
through] - [they] will be given a kind of a training or walk
through by one of our security team, team member[s] actually,
to how it works, how does it work in reality. . . People will be
given some level of platform information, that what [does] this
Hackathon [mean] and it’s a game, you know, game! Where
can you show me where is [the] problem. Can you fix [the]
problem? [Do] you think there is a problem here? Do you
think [with this] given website, will you be able to hack some
data from my, from the machine, you know? So it’s all kind
of doing, rather than just doing, a Powerpoint programme, a
presentation, [it’s] more getting your hands dirty and getting
things done.” - P13 “[I’m] fortunate enough to work in a
company where there is a Hackathon every month somewhere
in the world right. And, and it’s amazing” - P14

VI. INDUSTRY TRENDS

This category is about the influence of industry trends on
programmers. Within this category are several elements that
affect the security-related decisions which programmers make:

trust in practices, industry-standards, and evolving technolo-
gies.

A. Trust in Practices

Trust in practices involves the faith that people put in
technologies. There are two categories that emerged: enterprise
and open-source. Enterprise solutions are paid licenses that
provide ongoing support, while open-source is free and built
by a community. This can mean that open-source products do
not provide long-term support. Those who worked in financial
tech and consultancy firms [P3, P6, P7, P9, P11, P12, P13]
favoured enterprise tools and libraries. They felt these tools
provided them with more security in protecting their assets.

Those participants did acknowledge that while enterprise
was favoured over open-source due to more trust, there were
times where open-source was needed when coming across
a new problem without any enterprise solution P12. The
participants also used open-source when they wanted to adapt
anything to best suit their practices without breaching any
legal agreements with enterprise solutions. “We do prefer
enterprise, but to avoid breaking any SLAs [service level
agreements] sometimes we have to look towards other open-
source alternatives. We don’t prefer it, but have to do it.” -
P12

Every participant stated that while the security team has to
vet new software, they do not check libraries. This, in turn,
gives programmers free rein over choice. The majority did not
check the security of open-source libraries [P1, P2, P3, P4,
P5, P7, P8, P9, P10, P11, P12, P13, P5]. One participant
P10 also stated that only the functionality of the library gets
checked after use. Therefore, there is a trust in libraries being
secure to use within an application, but as a community of
people building open-source libraries, there are no guarantees.
“I honestly, like, I don’t know, like, I’m really allowed to like
code, and use the library and play around with it.” - P10 “It’s
this really strange thing that I’ve seen a few times now around
in places. They provisionally accept a lot of different pieces
of open-source technology which is kind of scary because it’s
just based on someone vouching for this piece of software.” -
P11

Only one participant said they checked open-source li-
braries before using them P14. They stated that open-source
libraries are great to use because they have so many different
people working on them at once, but it was naive not to check
them for any discrepancies or issues, especially since so many
are readily available which can make the choosing process
overwhelming. This checking burdens programmers, and their
ethics and a lack-of doing this can provide entryways to threats.
“. . . there are a certain giveaways which you can look in the
code-base and footprints to actually see if the tools are leaning
towards the good-side or bad-side. . . there are a few giveaways
like the test coverage of a tool, linting in the tool. How many
commits do you actually do? Do you write any footprint doc
for it? How do you add a feature? Is it commented? Types,
annotations.” - P14

The participants in government organisations or within
smaller start-ups had to outsource a lot of the security work
[P1, P5, P8, P9, P15]. Organisations do not have the resources
to dedicate the time into this aspect of programming, and

6

consequently, they also do not robustly test any outputs of
the vendors against security, only the functionality. They rely
on a trust on vendors. “I think it’s mostly a resource limitation
because we don’t have that many developers. . . Yeah that’s a
no from me.” - P5

Participants stated they have a trusting relationship with
their vendors. This relationship was acknowledged as not the
best practice, and one participant P11 noted that vendors and
client both lie, so it was better to ask as many questions as
possible. “There is a lot of like - I’m not quite sure what
the right word would be, but basically they try and front very
differently. Like if you’re a vendor you try and act like you’re
very, very competent and understand everything and are a pro
of what you do because that’s what you’re getting paid for
right? . . . I’ve been in meetings where people have blatantly
lied. Like vendors have blatantly lied about their experience,
how their piece of technology works and like it happens and
it’s very hard to control it especially when the other-side of
the table, often the client who you’re dealing with as like a
consultant isn’t often very technical. So you’ll try to explain
something to them and they do not understand it, they don’t
get it. . . They will sometimes get it, but often they pretend that
they understand and will just kind of put a stamp and move
on or business will say budget and say no”.

Another participant mentioned that a data breach due to a
vendor designed product was the catalyst for change within
their organisation for hiring an internal software team as they
did not trust future contractors. “Around the time we started
doing everything in-house.” - P10

B. Industry Standards

Industry recommendations and standards such as the
OWASP (Open Web Application Security Project) Foundation,
SOC (System and Organisation Controls) and ISO 9001 af-
fected much of the processes of how programmers work with
security [12], [19]. There are frequent changes in recommen-
dations, and ongoing work involved in legal compliance and
best-practice adherence.

Participants cited SOC reports and ISO compliance [P2,
P3, P4, P6, P7] as being the key frameworks that get followed
when coding. ISO publishes standards that have requirements
(clauses) that organisations need to follow. SOC has some
more adaptability where an organisation can meet the criteria
in any way. Ultimately, they build trust and are mandates so
that programs can be used externally by clients and other
parties. “It’s so it can be used by clients or it’s not allowed.”
- P3

The clauses and criteria enforce transparent coding prac-
tices upon programmers such as encryption of their work and
separation between applications, “zero-trust architecture” -
P1. Programmers also follow the best-practices outlined by
OWASP. This includes not only the actual code but also
documentation. “With the various compliance regimes that
we’re under, so there’s ISO27001, PCI and some stuff for the
government we have to demonstrate that we are following the
processes.” - P2

There is pressure to keep on par with other similar people
and companies in the industry. This is to still stay relevant

in the area of expertise and especially for vendor firms to
look appealing for their clients. “We haven’t [stuck] ourselves
in any particular way. Whatever industry is responding [to]
and whatever the new features and challenges are coming, we
adopt it; we adopt as early as possible.” - P13

C. Evolving Technologies

Participants emphasised the emerging and evolving tech-
nologies in the industry as being a motivator in continually
adapting security practices. Cloud technology was frequently
bought up in the interviews. The very first participant sug-
gested that in following interviews, we should focus on cloud
in order to match the newer ways of working rather than
just the old. This emergence of the cloud involves server and
data migration to services like AWS (Amazon Web Services)
and Azure (Microsoft). AWS and Azure are prevalent in the
industry as they are the two cloud services approved by the
government. The migration has been slower in NZ compared
to the rest of the world due to data legally having to be stored
on-shore within NZ. “Any organisation private or public, they
are putting extra [effort] and going out of the box to [move]
onto cloud, and the cloud is totally different compared to the
on-premises legacy infrastructure.” - P1

VII. RELATIONSHIPS BETWEEN CATEGORIES

This section describes the relationships between each of the
categories: trends inform organisations, organisations impact
culture and then vice versa with culture influencing people in
organisations (see Figure 1).

A. Trends Inform Organisations

Emergent trends in the industry heavily informed organ-
isational practices. This relationship exhibits when standards
(§VI-B) and newer technologies (§VI-C) arise. There is a rush
for organisations to seem relevant, up-to-date or in compliance
with the law.

When new technologies become widespread in the industry,
organisations adopt them in their technology stack, as seen in
the rapid rise of React and other JavaScript frameworks into
widespread practice [P3, P5, P7, P10, P13]. “Nowadays React
is getting more popular, you know? We as a company have to
grow as well and we can’t [be] sitting on our past legacy
code. . . We have to offer and we have to adapt those new, we
call it as futuristic technology. . . It has a capacity to adapt new
security principles - measures. . . We see a long lasting future
rather than continuing with our legacy process. In terms of
productivity, it is more convenient, it is more user-friendly, it
is more responsive, it is more secure compared to our legacy.
We can’t avoid it. . . We have to keep progressing “ - P13

They can also become mandated by the organisation as
with Jenkins for automation of component pipelines P11. The
choice of that is because of new industry practice, not explicitly
stated by compliance standards or by legislation, but the desire
to match and be on-par with other companies.

Project management techniques are informed by industry
trends as well. The phasing out of the traditional water-
fall approach is due to the emergence of Agile, and now
a movement towards DevOps. A consequence of the latter

7

methodology is DevSecOps as another trend. These changes to
match the trends seem to be premature and confusing for many
programmers. How do deal with these new management styles
does not get explained well – but programmers have learned to
accept this. “DevSecOps is a new thing that’s getting popular
in Wellington.” - P3

There is more of a shift and understanding that there
needs to be more technical programming support provided
in workplaces (see V-B, with some budget put aside for this
by companies). There is not a not strong trend yet, but as
established companies [P2, P10, P14] have begun to do live-
coding workshops and internal “Hackathons”, this may further
inform other organisations of the benefits of such security
training techniques.

B. Organisations Impact Culture

Organisations impact the culture of employees, affecting
the elements we identified earlier: knowledge sharing, biases
and attitudes and experience.

Organisational structure impacts the ability to share knowl-
edge. This is most clearly affected by the project management
techniques in use. With a more DevOps approach, there is
talking going on throughout the project life-cycle, which
involves different teams. This is similarly identified in the
Agile management styles as best practice, pulling in security
team members to assess at the end of each sprint. Participants
identified these two methodologies as being extremely helpful.
“I love DevOps, and what it kind of means to me is that we
have these cross-functional teams and we make it that you’re
not throwing over a dead cat to Ops. . . “ - P11

These two approaches, as opposed to waterfall, also pro-
mote communication within teams as the constant assessing
makes internal teams discuss whether their solutions are best-
practice, and they share ways of changing. “It’s much easier
to scale it back rather than catch it, what is it called?
DevSecOps.” - P12

Biases and attitudes are impacted and shaped by an or-
ganisation as well. An organisation which fosters security
involvement throughout a project, and also promotes ongoing
security education for programmers, will be an organisation
that finds people more willing to change and more optimistic
about having their code going through multiple iterations of
security. P10 stated that they were happily making the waterfall
approach work because they were unwilling to change despite
the difficulties they bought up in being blocked by the security
team for long periods. “Developers can be focused on just
building good applications. I think the set-up right now [by
keeping teams different] is pretty good, I just say that it is just
annoying trying to put requests through and them being slow,
but that happens everywhere.” - P10 P4 also was observed to
have a distaste in dealing with security when programming as
they do not get provided with ongoing training opportunities.
“They are aware of the lacking and they’re looking to fix it.”
- P11

Experience gets impacted by one aspect of an organisa-
tion, security training techniques. Theoretical security training,
whether it be about policy and protocols, or lecture-style talks
and LinkedIn videos, are a way of exposing employees to

past and current threats to an organisation. As cases and how
they can be managed is explained to employees (e.g. SQL
injections), they can learn ways of mitigation and increase
their knowledge. Increase in knowledge, however, does not
increase people’s experiences: “I think new people kind of go
into it kind of full-steam ahead, I think. I think it’s something
we have going around when we are in formal education and
it’s something we are vaguely aware of. But more experienced
teams - more experienced members, definitely have those, like
you asked, do you have something you’ve learned from, that
you know stung you, and experienced people have those. And
I think, new people, not that we are unaware of it, it hasn’t
happened to us and it doesn’t seem quite as real. And obviously
we are trying to mitigate it, but I think until you get to the point
where you have that moment, it’s not going to shake you to
your core the way it really maybe should.” - P8

C. Culture Influences Organisations

While organisations impact culture, culture also influences
organisations [3]. The critical distinction between the two
is that impact is forcing change, while influence is more
about persuasive norms. Culture does this to both project
management techniques and security training techniques.

Biases and attitudes influenced project management tech-
niques. As clear from our participants, interpretation varied for
waterfall, Agile or DevOps. This related to various attitudes,
biases, and experience. These consequently make it hard to
involve security as an ongoing component of a project life-
cycle. It is even difficult to make changes to organisational
management regarding security as some people do not want
any disruption in the current norm. “I have worked with so
many of these people who refuse to change, refuse to update,
refuse to do things better, refuse to do anything new.” - P11

Biases and attitudes, paired with experience, do affect
the way organisations implement security training techniques.
Based on the participants within the sample group, the more
experienced members did not participate in as frequent training
sessions compared to the lesser experienced individuals. This
provides the bias to organisations that experienced members
will not benefit from the training, and some places did not
provide it ongoing.

Attitudes in regards to security training techniques were
also a significant influence to organisations with a participant
noting that if fun events like Hackathons are enforced, people
do not want to participate. “Hackathons are, here’s the thing,
when you define a structure for people sometimes, sometimes
people don’t perform. If you define Hackathon [from] Tuesday
till Friday and you’re busy, then you’ve lost it. It needs to
[fit with] the culture of the team. I’m fortunate enough to
work in an organisation where it’s a part of the culture. And
Hackathons are optional. You can be the part or you can leave
the part. . . It should be part of the culture, which means it
should be part of your day-to-day chatters [that] you have
, it should be encouraged by not only your colleagues, by,
by your chain or command of people. It should be something
which should be part of your daily discussions” - P14

8

Fig. 1. A Theory of Influences on Security Practices. Three broad categories: Culture, Organisations, Trends, and the relationships between the categories.

VIII. DISCUSSION

Our study set out to better understand programmer security
practices. Using Grounded Theory, we identified how practices
arose because of a set of influences. We found three broad
categories of influences, each with several elements. Moreover,
we found rich interactions between these influences. Our
overall theory is described in Figure 1.

Organisational factors was found to be the core category as
it was the central category which occurred frequently and was
closely related to the other two categories and attributes [11].
A prior iteration of the diagram had shown one additional cat-
egory, “Teams”. However, as the constant comparison process
occurred, the factors of teams seemed to be more-so attributed
to organisations. This meant that this category was discarded
and the factors merged into those of organisations. Another
discarded category involved the influence of stakeholders. At
the beginning of the interview process, clients and vendors
seemed to have significant influence on the security practices
of programmers, but as the analysis process developed, it was
not as strongly referred to in the data. Even when prompted, the
idea seemed irrelevant to many. Participants typically disclosed
that they were not aware that security decisions were dependent
on any particular stakeholders, and that set practices were
already stipulated.

By understanding how the theory categories each relate to
each other, organisations might implement changes in how they
react to trends and how they deal with and motivate changes in
culture. In particular, there needs to be reform in how security
is taught in organisations. There should be more support for
programmers in terms of technical education, instead of just
general policy and practices. Technical education might be
best done with frequent, optional internal Hackathons. Our
participants described working on cases related to the nature
of the organisation, with a mock scenario which to build up
the experiences of employees in a safe environment. In an
investigation done by researchers Pe-Than et al. [20] it was
found that after completing a large scale corporate software
Hackathons, participant’s attitudes (based on five teams) had
also changed to become more positive and confident about
learning new skills by themselves.

There were several limitations with our study data. While
we sought diversity in our sample, it was only 15 participants,
and more work is necessary to explore generality. There was
also a gender imbalance in the participants. One third were

female while the rest male. It might be argued that this is
indicative of the actual population. As women in the software
development and security industry typically have different
experiences to the majority, it would have been interesting
to have more diverse data [22]. While it was interesting to
obtain a diverse range of experiences within the sample group
of participants, for future work, the investigation might benefit
from reducing the scope of participants. By choosing one type
of role, one sector or similar years of experience, the theory
might include better understanding of the diverse perspectives
that are involved in creating software.

Another difficulty that limited the theory when data col-
lecting was the reticence to answer questions. For some
participants, non-disclosure agreements (NDAs) were so strict
that they could not answer questions such as, “what language
do you use to program with at work?” This made it challenging
to draw appropriate conclusions during the middle of this
study. This could have also introduced slight biases in the
collection as observational inferences were made based on the
non-responses.

IX. CONCLUSIONS

This paper reported on a study to investigate programmer
security attitudes and behaviour. Following a Grounded Theory
research process, we developed the “Theory of Influences on
Security Practices.” This suggests an answer to our original
overall question: Why Do Programmers Do What They Do?

We had started with three research questions about chal-
lenges, training, and adoption. In the process of the study,
however, we realized there was a system of influences at work
that informed all these issues in a complex way. Cultural
factors affected knowledge sharing, biases and attitudes. Or-
ganisational factors included project management techniques
and security training techniques. Industry trends affected trust
in various practices, and evolving technologies also affected
programmer practices. This emergent theory was drawn from
newly gathered information, which is relevant to the topic and
appears to be adaptable in the longer term. Overall, the findings
suggest a need for more robust educational programmes in
the workplace, a need for companies to reevaluate how they
respond to trends, how they structure their organisations, and
what they do to improve their security culture.

9

ACKNOWLEDGMENTS

This research was supported by a Victoria University of
Wellington, University Research Fund (URF) Grant, #216549,
User-Centred Secure Programming.

REFERENCES

[1] H. Assal and S. Chiasson, “‘Think secure from the beginning’: A Survey
with Software Developers,” in Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM, 2019, p. 1–13.

[2] Aura Information Security, “Cyber security market research
report,” [Online]. Available: https://www.kordia.co.nz/
aura-cyber-security-market-research-2019, 2019, [Accessed May
25 2020].

[3] R. Biddle, A. Meier, M. Kropp, and C. Anslow, “Myagile: Sociological
and cultural effects of agile on teams and their members,” in IEEE/ACM
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), 2018, pp. 73–76.

[4] L. F. Cranor and S. Garfinkel, Security and Usability. O’Reilly Media,
2005.

[5] Department of the Prime Minister and Cabinet, “New Zealand’s cy-
ber security strategy 2019,” [Online]. Available: https://dpmc.govt.
nz/sites/default/files/2019-07/Cyber%20Security%20Strategy.pdf, 2019,
[Accessed May 25 2020].

[6] N. Forsgren and M. Kersten, “Devops metrics,” Communications of the
ACM, vol. 61, pp. 44–48, 03 2018.

[7] B. G. Glaser and A. L. Strauss, Discovery of Grounded Theory :
Strategies for Qualitative Research. Chicago, USA: Aldine Publishing,
1967.

[8] M. Green and M. Smith, “Developers are not the enemy!: The need
for usable security APIs,” IEEE Security Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[9] B. Hendrix, “Knowledge sharing: Definition & pro-
cess,” Available: https://study.com/academy/lesson/
knowledge-sharing-definition-process.html, 2017, [Accessed October
20 2020].

[10] R. Hoda and J. Noble, “Becoming agile: A grounded theory of agile
transitions in practice,” in Proceedings of the 39th International Con-
ference on Software Engineering (ICSE). IEEE, 2017, p. 141–151.

[11] R. Hoda, J. Noble, and S. Marshall, “Grounded theory for geeks,” in
Proceedings of the 18th Conference on Pattern Languages of Programs
(PLoP). ACM, 2011.

[12] ISO.org, “ISO/IEC 27001 Information Security Management,” [Online].
Available: https://www.iso.org/isoiec-27001-information-security.html,
[Accessed October 06 2020].

[13] B. Julian, J. Noble, and C. Anslow, “Agile practices in practice: Towards
a theory of agile adoption and process evolution,” in Agile Processes
in Software Engineering and Extreme Programming (XP). Springer,
2019, pp. 3–18.

[14] D. Kirk and E. Tempero, “Software development practices in new
zealand,” in Asia-Pacific Software Engineering Conference (APSEC),
2012, pp. 386–395.

[15] M. Kropp, A. Meier, C. Anslow, and R. Biddle, “Satisfaction, practices,
and influences in agile software development,” in International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE).
ACM, 2018, p. 112–121.

[16] Ministry of Health, “Cyber security incident,” [Online]. Available:
https://www.health.govt.nz/our-work/emergency-management/
cyber-security-incident, [Accessed May 31 2020].

[17] ——, “Update on tū ora cyber security incident at 8 october 2019,”
[Online]. Available: https://www.health.govt.nz/system/files/documents/
pages/health report 8 october 20191935 redacted.pdf, [Accessed
May 31 2020].

[18] N. Newton, C. Anslow, and A. Drechsler, “Information security in agile
software development projects: A critical success factor perspective,” in
Proceedings of the 27th European Conference on Information Systems
(ECIS). AIS, 2019.

[19] OWASP, “OWASP Secure Coding Practices,” [Online]. Available:
https://owasp.org/www-pdf-archive/OWASP SCP Quick Reference
Guide v2.pdf, [Accessed May 25 2020].

[20] E. P. P. Pe-Than, A. Nolte, A. Filippova, C. Bird, S. Scallen, and
J. Herbsleb, “Corporate hackathons, how and why? a multiple case
study of motivation, projects proposal and selection, goal setting,
coordination, and outcomes,” Human Computer Interaction, pp. 1–33,
2020.

[21] P. Ralph, “ACM SIGSOFT Empirical Standards Released,” SIGSOFT
Softw. Eng. Notes, vol. 46, no. 1, p. 19, Feb. 2021.

[22] S. Sobieraj and N. C. Krämer, “The Impacts of Gender and Subject
on Experience of Competence and Autonomy in STEM,” Frontiers in
Psychology, vol. 10, 2019.

[23] M. Tahaei and K. Vaniea, “A Survey on Developer-Centred Security,” in
European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2019, pp. 129–138.

[24] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse, and A. Rashid,
“Interventions for long-term software security: Creating a lightweight
program of assurance techniques for developers,” Software: Practice
and Experience, vol. 50, no. 3, pp. 275–298, 2020.

[25] C. Weir, J. Noble, and A. Rashid, “Challenging Software Developers:
Dialectic as a Foundation for Security Assurance Techniques,” Journal
of Cybersecurity, 04 2020.

10

