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Abstract—CAPTCHAs are a widely deployed mechanism to
distinguish a legitimate human user from a computerized pro-
gram trying to abuse online services. Attackers, however, have
devised a clever and an economical way to bypass the secu-
rity provided by CAPTCHAs by simply relaying CAPTCHA
challenges to remote human-solvers. Most existing varieties of
CAPTCHAs are completely vulnerable to such relay attacks,
routinely executed in the wild.

Dynamic Cognitive Game (DCG) CAPTCHAs are an up-
coming CAPTCHA category which require the user to play a
simple moving object matching game. Due to the dynamic and
interactive nature of the underlying games, DCG CAPTCHAs
may offer resistance to relay attacks. In this paper, we focus on a
streaming-based DCG CAPTCHA relay attack whereby the game
frames and responses are simply streamed between the attacker
and a human-solver. We present a mechanism for detecting
such a streaming-enabled game captcha farming based on real-
time game statistics, such as play duration, mouse clicks and
incorrect drags, fed to machine learning detection algorithms. To
demonstrate the feasibility of our detection mechanism, we report
on a three-dimensional study measuring: (1) the performance of
legitimate DCG CAPTCHA users, (2) the performance of remote
human-solvers in a DCG CAPTCHA streaming attack, and (3)
the performance of gameplay behavioral features and machine
learning classifiers in distinguishing human-solvers in a streaming
attack from legitimate users. Our results show that it is possible to
detect the streaming-based relay attack against many instances
of DCG CAPTCHAs with a high overall accuracy (low false
negatives and false positives). Broadly, DCG CAPTCHAs appear
to be one of the first CAPTCHA schemes that enable reliable
detection of relay attacks.

I. INTRODUCTION

The term CAPTCHA (hereafter referred to as “captcha”) was
first introduced in 2000 [3], describing a test that can differen-
tiate humans from malicious computer programs. Captchas are
deployed by many online services, such as account registration,
ticket selling, and search engines, to limit the scale of different
types of attacks (e.g., denial-of-service or password dictionary
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attacks) involving automated bots. Most captchas are largely
based on visual challenges, such as involving users to identify
alphanumeric characters in distorted images, but many other
variants have also been proposed [13, 24].

Unfortunately, captchas are not foolproof, and many captchas
used in real-world have been successfully attacked. The task of
solving captcha has been made easier by commercial solving
services that attackers often utilize [18]. These services offer
two categories of attacks: automated attacks and relay attacks.
Automated attacks (e.g., [10, 15, 16]) normally utilize image
processing algorithms to solve the captcha, while relay attacks
[18] utilize the human intelligence of third-party, remotely
located human-solvers.

Relay attack involves outsourcing the captcha solving process
to human labor, either opportunistically or via sweatshops [18].
An attacker could launch a website that attracts visitors by
providing some free service, and then opportunistically engage
them in solving third-party captchas. Alternatively, an attacker
could hire people to solve captcha and pay them a certain
amount of money per successful attack. A relay attack against
a text captcha, for instance, involves the attacker to forward
the image that contains the captcha to a human-solver; the
solver then solves the captcha in real-time, and provides the
solution, which the attacker relays back to the server.

Although automated attacks seem to be a natural option to
bypass the security offered by captchas, developing programs
to solve captcha with human-like accuracy is often very
complicated and costly [18]. In contrast, paid solvers are willing
to solve as many as 1000 captchas for just $1, making relay
attack an overall more attractive, effective and economical
option [18]. While the traditional captcha research has focused
mainly on developing, or preventing, automated captcha attacks,
attackers in the wild have gone on to break existing captcha
schemes via relay attacks [18].

Most, if not all, existing captchas are vulnerable to relay
attacks, and do not provide a reliable mechanism to distinguish
a remote human-solver from a legitimate user (Section II
provides the details). In this paper, we focus on an upcoming
variety of captchas, called Dynamic Cognitive Game captchas
(DCG), which may facilitate relay attack detection capability
due to their dynamic and interactive nature. In a DCG captcha,
the user has to perform a game-like cognitive task interacting
with a series of dynamic images, such as playing a simple



object matching game (see Figure 1).
Due to their interactive and dynamic nature, DCG captchas

may offer some level of resistance to relay attacks. In this
paper, we study a specific form of a relay attack against DCG
captchas, called Stream Relay, whereby the game challenges
and responses are synchronously streamed between the attacker
and the human-solver.
Our Contributions: We present a three-dimensional study
with 120 Amazon Mechanical Turk participants to assess the
usability of DCG captchas and the performance of the DCG
captcha Stream Relay attack, and show how real-time gameplay
characteristics and behavioral features can be used as part of
machine learning algorithms to effectively detect the Stream
Relay attack. The main contributions of the paper are outlined
below:
1. DCG Captcha Usability Study: To evaluate the performance
of DCG captchas when solved by legitimate users, we conduct a
usability study with 40 users. This study serves as an important
component of our Stream Relay detection mechanism. The
results show fast response times and low error rates, and good
user experience.
2. Stream Relay Attack Study: We formalize, design and
implement the Stream Relay attack against DCG captchas,
and perform a user study with 80 participants to measure
the performance of the streamed version of DCG captchas
when solved by remote users (serving as human-solvers in
the relay attack). Our study captures three realistic attack
settings: high-latency channel between attacker and solver,
low-latency channel between attacker and solver, and reduced
game size. The results show that the response times and error
rates are generally higher when compared to those exhibited
by legitimate users in the usability study, highlighting the
possibility of relay attack detection.
3. Stream Relay Attack Detection: Based on the data collected
from the above components of the study, we design and evaluate
a Stream Relay attack detection mechanism. Our detection
mechanism utilizes real-time game statistics, such as play
duration, mouse clicks and incorrect drags, fed to machine
learning algorithms, in order to differentiate legitimate user
gameplay from human-solver gameplay in the relay attack. Our
results show that it is possible to detect the streaming-enabled
relay attack against many instances of DCG CAPTCHAs with a
high overall accuracy (low false negatives and false positives).

II. RELATED PRIOR WORK

A wide variety of captchas have been proposed over the last
decade or so. The most commonly utilized captcha involves
challenging the users to recognize alphanumeric characters
embedded within an image, such as Gimpy, Yahoo, reCapthca
[23], Baffle [7], handwritten [19] and PayPal, or within a video
such as NuCaptcha and emergent captcha[24]. Captchas that
challenge the users to recognize or classify objects in images,
such as collage captcha [20], implicit captcha [4], Bongo, asirra
captcha [8], PIX, ESP-PIX [22] and Google image orientation
[11], have also been proposed. Some video-based captchas,

such as content-based tagging of YouTube videos [17], and
audio based captcha, such as Google, ebay, Yahoo, ReCaptcha,
Slashdot and Math-function [12] audio captchas, have also
been introduced.

Subjecting textual captchas to relay attacks is very simple –
the attacker simply forwards the challenge image to the solver,
who provides the response which the attacker simply forwards
to the service. Effectively detecting such attacks does not seem
feasible. One way to avoid them is to set a timeout for solving
the captcha. However, timing alone is not a robust method for
detecting an attack. A comprehensive study on captcha-solving
services presented in [18] concludes that 70% of the captcha
submissions are correct, and are submitted within 30 seconds,
which is well within the captcha timeout set by most websites.

Attacking video captcha [24] is straightforward as well.
The captcha video file can be forwarded to a human-solver.
Alternatively, a new video can be created by taking multiple
snapshots of the video captcha, and sent to the human-solver.

Image-based captchas require users to perform an image
recognition task, e.g., selecting only the images of cats in a grid
of images. This kind of captcha can also be easily attacked
by relaying. The image can be transferred to a solver, and
solver can send back the coordinates of the mouse clicks to
the attacker. The attacker’s bot can then replicate the action
performed by the solver.

The fact that most captchas are static and do not require
multiple interactions from a user makes attacking them by
relaying to a human-solver an easy task. Table II.1 provides a
summary of how different categories and instances of existing
captchas can be subjected to a relay attack.

DCG captcha is perhaps the first step towards creating
interactive and dynamic captcha capable of defeating relay
attacks. A commercial implementation of DCG captcha, called
“are you a human,” [1] is also available. In this paper, we
present an evaluation of the Stream Relay attack against DCG
captchas and show how gameplay features and machine learning
algorithms can be used to detect this attack.

III. BACKGROUND AND OVERVIEW

In this section, we present our implemented DCG captchas,
provide an overview of the Stream Relay attack and our
attack detection model, and review Virtual Network Computing
(VNC), a streaming service used in our attack implementation.

A. DCG CAPTCHA Instances and Prototypes

Due to the legal restrictions on attacking commercial DCG
CAPTCHAs, we proceeded to develop our own animation-
based DCG prototypes for the purpose of our study. Using
Adobe Flash, we implemented four captcha games that rep-
resented a broad class of DCGs. These games are 360x130
pixels in size, and seamlessly fit into web pages if used for
practical purposes.

The DCG captchas implemented for the purpose of this study
are shown in Figure 1. Each DCG captcha can be characterized
by the following distinct components.
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TABLE II.1: Relay attacks against various types of captchas
CAPTCHA 
Category

Example Instances Static/
Dynamic

User 
Interaction

Relaying Method Detection 
Possible
(apart from 
time-out)

Text Gimpy, Yahoo,
reCAPTCHA, Baffle, Handwritten, 
PayPal

Static Type Transfer challenge image No

NuCaptcha Dynamic Type Transfer single snapshot No

Emergent captcha Dynamic Type Transfer video file, or create 
video from snapshots and 
transfer

No

Image Asirra, Bongo, collage, implicit Static Single/multiple 
mouse clicks

Transfer image No

PIX Static Type Transfer image No

ESP-PIX Static Select answer Transfer image No

Google image orientation Static Move a slider Transfer image inside same 
applet used to display the 
original captcha

No

Video Content-based tagging of YouTube 
videos 

Dynamic Type Transfer video file No

Audio Google, ebay, Yahoo, Recaptcha, 
Slashdot, Math-function

Dynamic Type Transfer audio file, or record
and send

No

DCG are you a human Dynamic Multiple drag-
and-drop

Stream Relay Yes

• Answer object – a moving object that should be dragged
to the corresponding target object in order to successfully
complete the game. For the parking game shown in Figure
1(b), the orange boat, that can be dragged to the empty
dock position to complete the game, is the answer object.

• Target object – an object onto which the corresponding
answer object should be dragged.

• Target area – the area within which the target objects
reside.

• Activity area – the area within which the foreground
objects move.

(a) Animal game (b) Parking game

(c) Shape game (d) Ships game

Fig. 1: DCG captchas used for the study

DCG captchas are classified according to the number of
target objects. The Ships game (Figure 1(d)), is a one-target
DCG type, where the sea is the target object. So the ships, that
are the answer objects, can be dropped anywhere within the
sea. The Shape game (Figure 1(c)) has a circle and a pentagon
placed on the left side of the game as the two target objects.
The Animal game (Figure 1(a)) is a three-target instance of
DCG captcha. The Parking game (Figure 1(b)) is a variant
of DCG captcha where there is no target object but a target
area (the empty parking space) onto which the boat should be
dragged.

To complete a DCG captcha game, a user has to drag and
drop all answer objects to their corresponding target objects.
For example, in the Animal game, the user has to drag the
bone to the dog, the acorn to the squirrel, and the banana to
the monkey. The game is considered incomplete, and the user
is rejected in case the game is not completed within 60s.

Each foreground object has an initial pre-specified location
in the activity area. The direction of movement of objects is
randomly chosen from 8 possible directions – north (N), south
(S), east (E), west (W), NE, NW, SE and SW. For horizontal
and vertical movements, objects move 1 pixel per frame. For
diagonal movements, the objects move 1.414 pixels per frame.
The frame rate for the games is set at 40 frames per second.
Hence, the foreground objects move at an average speed of
(((1+1.414)/2) ⇤ 40), i.e., 48.28 pixels per second. An object
continues moving in its current direction until it collides with
either another object or the game border. A collision results in
an object moving towards a new random direction.

B. Stream Relay Attack, and Study Hypothesis

Web-based games are commonly developed using Flash
and HTML5 with JavaScript. Both these platforms operate
by downloading the game code to the client machine and
executing it locally. To make it difficult for the attacker (bot)
to deduce the answer objects and their respective locations from
the downloaded code, the security model of DCG captchas
must require the server to encrypt or obfuscate the game code.
Moreover, the server needs to implement a method to prevent
the games from being downloaded and embedded onto different
domains.

In a normal setting, i.e., when a legitimate user U is
interacting with the web service W , the server W would send
the encrypted/obfuscated DCG code to U , U would render it
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(a) Honest User Gameplay

(b) Human-Solver Gameplay in a Stream Relay Attack

Fig. 2: Honest Setting vs. Attack Setting

locally on his/her machine, and play the game. Since our Stream
Relay attack detection strategy employs gameplay features,
when U successfully finishes the game, the log of all of U’s
mouse interactions with the game is sent to W . W then runs
a detection algorithm on input of this log, and responds back
by accepting (or rejecting) U as shown in Figure 2(a). All
communication between U and W takes place over a secure
channel (e.g., SSL/TLS).

Under Stream Relay, the attacker A obtains the DCG captcha
challenge from W , just like a legitimate user. The attacker runs
a streaming server (such as a VNC server), and the human-
solver S connects to the attacker machine through a streaming
client (such as a VNC client embedded within web browser).
This streaming software is responsible for delivering the DCG
captcha frames to S and sending S’s mouse interactions, such
as drag-and-drop, mouse clicks and positions, to A. A then
simply forwards the log of this interaction between S and the
game to W . Finally, W would run the detection algorithm on
input of this log, and responds back by rejecting (or accepting)
A. The Stream Relay attack flow diagram is shown in Figure
2(b). Due to network latency, our hypothesis is that S may
suffer from the degradation of the game quality at his/her end.
This degradation would decrease the game performance of
DCG captcha. More importantly, it would make the solver
interaction with the game distinguishable from the interaction
between the legitimate user and the game (as in the normal
setting), and thereby make it possible for the server to detect
the relay attack.

To test our hypothesis, we first measured the performance
of legitimate users playing the DCG captcha games (usability
study). Then, we measured the performance of the human-
solvers in a Stream Relay attack under three different settings:
(1) high-latency connection between attacker’s machine and

solver’s machine (attacker in the US and solver outside the
US), (2) low-latency connection between attacker’s machine
and solver’s machine (attacker and solver both in the US), and
(3) high-latency connection between the attacker’s machine
and solver’s machine with game size down scaled to reduce
the effect of latency. In Sections IV and V, we will report on
our usability and Stream Relay attack experiments. Then, in
Section VI, we will present how the DCG captcha server can
utilize gameplay features and machine learning algorithms to
detect the Stream Relay attacks on DCG captchas.

C. Virtual Network Computing (VNC) Overview
In our Stream Relay attack experiments, we use VNC as

the streaming software. VNC makes it possible to remotely
control a computer over a network connection. The VNC system
consists of a VNC client, VNC server and VNC protocol.
VNC utilizes remote framebuffer protocol (RFB). RFB is a
machine independent protocol for remote access to graphical
user interface [21].

The VNC client is a simple program. After connecting to the
server, it falls into an infinite loop in which it sends requests
to the server about a specific on-screen rectangle, and waits
for the update. Whenever it receives the update which consists
of an encoding changes between now and the last request, it
processes the update and redraws the display [21].

The update sent from the server to the client has a header
that contains general information about the message, and a
series of rectangles, each of them has a header that contains
the dimension of the data following it and its encoding. This
structure makes it possible for the client to process the updates
incrementally, the client does not need to wait till it receives
the whole message before starting to process it. When the
client has processed as much of the update as it has received,
the client utilizes the ideal time to gather the input from the
user mouse and keyboard and sends them to the server [21].

VNC server keeps scraping the framebuffer, the area of
memory which stores the color value of each screen pixel.
Whenever the framebuffer is changed, the server stores the
modified region (the representation of the modified area and
the modification made to it). The server keeps updating the
modified region with the update of the framebuffer till it
receives a client’s request [21].

The client’s request contains only the dimensions of a
rectangle and a bit that indicates whether the request is
incremental or not. If the request is not incremental, the server
will send the whole framebuffer. Otherwise, the server sends
the overlapping area between the requested rectangle and the
modified region and clears the modification from the modified
region [21].

In our study, we utilize RealVNC [2] to stream the DCG
captcha from the attacker to the human-solver. RealVNC allows
clients to connect to the server from web browser, so the clients
do not need to install any additional software.

IV. STUDY DESIGN AND PROCEDURES

In this section, we present the design of our experiments
to study the usability of DCG captchas (i.e., legitimate
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user gameplay), and the performance of DCG Stream Relay
attack (i.e., human-solver gameplay). We utilized the Amazon
Mechanical Turk (MTurk) service to recruit workers for the
study. Overall, 120 users participated in our study. The project
was approved by our University’s Institutional Review Board.

A. Usability Study

We provide a detailed description of the usability study
that we conducted to measure legitimate user’s gameplay
performance of our instances of DCG captchas. Forty MTurk
workers were recruited, and paid $0.5 for their efforts that took
approximately ten minutes. The MTurk workers were provided
with four DCG captchas (Figure 1) in succession, and the game
completion time, the number of object-drags, and the number
of clicks were recorded. The order of the games presented to
different participants was derived using a standard 4x4 Latin
Square design to minimize learning effects.

The MTurk workers were subjected to a consent agreement,
and a demographics form before the experiment. At the end
of the experiment, their experience in solving DCG captchas
was recorded using a survey form. The survey contains the 10
System Usable Scale (SUS) standard questions, each with 5
possible responses (5-point Likert scale, where 1 represents
strongly disagreement and 5 represents strongly agreement)
[5].

Table IV.1 (second column) shows the demographics of the
40 participants of our study. There were 67.5% males and
32.5% females. These participants are composed largely of
young, educated individuals aged 18 - 35 years. A majority
of the participants came from computer science, engineering,
and business/finance backgrounds. A large percentage of the
participants were from India. Our usability study demographics
reflects the typical distribution of MTurk workers as explained
in [14].

B. Stream Relay Attack Study

MTurk workers were hired for the Stream Relay attack study
as well. The MTurk workers (serving the role of human-solvers)
were asked to connect to a computer residing at the University
of Alabama at Birmingham (UAB) and connected to UAB
wireless network through a VNC java applet (serving the role
of the attacker’s machine). Just like the usability study, the
workers were then asked to fill demographics form, play four
DCG captchas (ordered based on 4x4 Latin Square), and fill
a survey form about their experience. The participants were
paid the same amount ($0.5) for their efforts as the usability
study participants.

We used three different experiments to test various relay
attack scenarios, as described below:

1) High-Latency Relay: The first scenario involved collect-
ing data from participants residing outside the US. Since
in a typical captcha relay attack [18], the human-solvers
are normally hired from sweatshops in remote countries
(e.g., India or China) by an attacker residing in the
US, this setting reflects a real-life relay attack scenario.

TABLE IV.1: Demographics of participants in the usability and stream relay attack studies

Usability Stream Relay Attack
Participant Location Outside US US

Game Size 360x130 360x130 180x65 360x130
Participant Size (N=120) 40 40 20 20

Gender (%)
Male 67.5 67.5 80 80

Female 32.5 32.5 20 20
Age (%)

<18 2.5 2.5 0 0
18 - 24 40 30 45 35
25 - 35 42.5 52.5 35 50
35 - 50 10 12.5 20 10
>50 5 2.5 0 5

Education (%)
High school 10 0 0 55

Bachelor 60 57.5 75 40
Masters 27.5 42.5 25 5
Ph.D. 2.5 0 0 0

Field of Study/Profession (%)
Computer Science 32.5 52.5 55 15

Engineering 20 20 30 5
Medicine 2.5 5 5 5

Law 2.5 2.5 0 0
Social sciences 5 0 0 5

Journalism 0 0 5 5
Finance 12.5 7.5 0 5
Business 10 0 0 20

Other 15 12.5 5 40
Country (%)

Afghanistan 2.5 0 0 0
Australia 0 0 5 0

Egypt 2.5 0 2.5 0
India 62.5 92.5 85 0

Ireland 0 2.5 0 0
Italy 0 0 5 0

Macedonia 0 2.5 0 0
Romania 0 2.5 0 0

United Arab Emirates 2.5 0 2.5 0
United States 30 0 0 100

Vietnam 0 0 5 0

We collected data from 40 participants as part of this
scenario.

2) Small Game Relay: The second attack scenario involved
testing a case when an attacker tries to minimize
communication between the attacker and the solvers
by reducing the game size. In our experiment, it was
achieved by presenting games with 1/4 of the normal size
to the subjects, i.e., a game with size 180x65. To evaluate
this scenario, we collected data from 20 participants
residing outside US.

3) Low-Latency Relay: In the last scenario, we tested a
setting in which the attacker launches the attack from a
machine that is in close proximity to the solvers (e.g.,
both the attacker and solvers are located in the US).
To evaluate this scenario, we collected data from 20
participants located within US.

Table IV.1 (third, fourth and fifth columns) shows the
participant demographics for the three Stream Relay attack
scenarios. For the High-Latency Relay scenario, 40 individuals
participated in our experiment, of which 67.5% were males
and 32.5% were females. These are participants composed
largely of young, educated individuals aged 18 - 35 years.
A majority of the participants came from computer science,
and engineering background. Most of the participants were
from India (92.5%). The demographics of this scenario is quite
similar to the one of the usability study, which allowed us
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to fairly compare the two settings as part of our relay attack
detection approach.

For the Small Game Relay scenario, we collected data from
20 participants. Again, the male demographics dominated
the female demographics, at 80% males vs 20% females,
mostly young. The participants were mostly educated, with
75% with Bachelor’s degree, and 25% with a Master’s degree.
The participants were mostly from India (85%), and mostly
from computer science (55%) and engineering (30%). The
demographics of this scenario is also much similar to the one
in the usability study.

Finally, for the Low-Latency Relay scenario, we collected
data from 20 participants inside US. The male to female ratio
was the same as for the second scenario, 80% male and 20%
female, and the participants were again mostly young. Most
of them had high school degree or Bachelor’s degree in this
case, in contrast to the previous scenarios.

V. STUDY RESULTS

In this section, we present the results of the usability and
Stream Relay attack studies. One goal of our study was
to analyze and contrast the efficiency, robustness, and user
experience provided by the DCG captchas to the legitimate
users and human-solvers in a relay attack. For each of the
four games tested in our experiment, game statistics such as
completion times and mouse drag-and-drop and clicks were
automatically logged by our web-interface software.

The efficiency of the captchas was measured as the game
completion time. The likelihood of incorrect drag and drop
attempts, incorrect attempts to grab objects, and the game
not being completed were used to derive the robustness of
the captcha. Finally, we analyzed user experience using the
participants’ SUS ratings and qualitative feedback.

The experimental results focus on the following metrics:
• Overall gameplay time – the gameplay time including

both complete and incomplete games.
• Successful gameplay time - the gameplay time for games

that are successfully completed.
• Error rate – the ratio of the number of incomplete games

to the total number of games.
• Drag error rate – ratio of the number of invalid drags-

drops to the total number of drag-drops.
• Click error rate – ratio of the number of clicks resulting

in invalid object selection to the total number of clicks.

A. Usability Study Results

The results obtained from the experiment performed to assess
the usability of the DCG games are shown in Table V.1.

The results indicate that the Animal game took the longest of
the four games, followed by the Shape game, the Ships game
and the Parking game. We observed that the game completion
time was proportional to game complexity, defined by the
number of game completion criteria (i.e., number of target
objects, or drags necessary). The Animal game, that required
three successful drag-and-drops for game completion, took

TABLE V.1: Completion times, and error rates per drag and per click, per game type in
Usability Study

Game
Name

Overall
Time (sec.)

Successful
Time (sec.)

Error
Rate

Drag
Error
Rate

Click
Error
Rate

Mean (Std. Dev.) Mean
Animal 16.10 (10.90) 14.97 (8.43) 0.03 0.26 0.45
Parking 8.53 (7.01) 8.53 (7.01) 0 0.54 0.69
Shape 13.22 (14.54) 9.42 (6.06) 0.08 0.16 0.35
Ships 11.46 (10.69) 10.13 (6.81) 0.03 0.32 0.45

TABLE V.2: SUS Scores

Mean Std. Dev.
Usability Study 73.25 15.07
High-Latency Relay 59 12.83
Small Game Relay 57 14.97
Low-Latency Relay 65.11 18.42

almost twice as long to complete as the Parking game that had
only one game completion criteria.

The error rate was the highest for the Shape game, at 8%,
followed by the Animal game and the Ships game, at 3%, and
then the Parking game, at 0%. Both the drag error rate and
the click error rate were the highest for the Parking game at
54% and 69%, respectively. Upon analyzing the error rates for
the Parking game, we found out that approximately 27% of
the participants completed the game without any extra drag-
drop, while 68% of the participants needed up to 3 extra
drag-drops. Only 5% participants needed more than 3 drag-
drops to complete the game. Although the drag error rate, at
54%, seems very high, it can be attributed to the erroneous
5% participants, who, on average, required 13 extra drag-drop
attempts to complete the game. In a similar manner, the high
click error rate of 69% could be attributed to 5% of the users
who required 16 extra clicks to complete the game.

We next evaluated the data collected during the post-study
phase from the participants. The mean SUS score came out to
be 73.25, with a standard deviation of 15.07 (Table V.2). The
results from SUS show that the DCG captchas are usable.

B. Stream Relay Attack Study Results
For Stream Relay Attack, we utilized three distinct scenarios,

as described previously, to perform our experiments: (1)
High-Latency Relay: Normal sized captcha for participants
outside the US. (2) Small Game Relay: Small-sized captcha
for participants outside the US; and (3) Low-Latency Relay:
Normal sized captcha for participants in the US.

The results for the first, High-Latency Relay, scenario are
shown in Table V.3. The games played as part of this scenario
took significantly longer than that performed with usability
study. On average, we found that completing DCG captchas
with High-Latency Relay took approximately 61% longer than
that for usability study.
TABLE V.3: Completion times, and error rates per drag and per click, per game type in
High-Latency Relay attack scenario

Game
Name

Overall
Time (sec.)

Successful
Time (sec.)

Error
Rate

Drag
Error
Rate

Click
Error
Rate

Mean (Std. Dev.) Mean
Animal 42.48 (16.48) 34.04 (13.52) 0.33 0.43 0.79
Parking 38.51 (20.82) 25.61 (15.79) 0.38 0.75 0.94
Shape 30.19 (19.62) 21.53 (12.79) 0.23 0.43 0.76
Ships 34.49 (16.08) 29.98 (13.00) 0.15 0.45 0.8
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TABLE V.4: Completion times, and error rates per drag and per click, per game type in
Small Game Relay attack scenario

Game
Name

Overall
Time (sec)

Successful
Time (sec.)

Error
Rate

Drag
Error
Rate

Click
Error
Rate

Mean (Std. Dev.) Mean
Animal 46.27 (12.90) 37.11 (8.21) 0.4 0.29 0.75
Parking 30.32 (20.61) 20.43 (13.20) 0.25 0.57 0.94
Shape 30.18 (14.32) 26.86 (10.86) 0.1 0.51 0.81
Ships 37.70 (19.29) 22.82 (8.17) 0.4 0.27 0.59

TABLE V.5: Completion times, and error rates per drag and per click, per game type in
Low-Latency Relay attack scenario

Game
Name

Overall
Time (sec.)

Successful
Time

Error
Rate

Drag
Error
Rate

Click
Error
Rate

Mean (Std. Dev.) Mean
Animal 26.17 (20.20) 17.54 (11.71) 0.2 0.35 0.67
Parking 18.72 (18.92) 14.13 (13.67) 0.1 0.46 0.88
Shape 17.48 (17.38) 15.25 (14.76) 0.05 0.21 0.57
Ships 18.47 (16.16) 16.28 (13.39) 0.05 0.25 0.54

Furthermore, upon comparing the mean time taken to
complete the games (Successful Time) between the usability
and High-Latency Relay using Mann-Whitney U test with
Bonferroni correction, we found a statistically significant
difference, with p < 0.0001, for each of the four games1. The
error rates were also significantly higher than those exhibited
in the usability study, on an average of 84%. The drag error
rate and click error rate were 40% and 42% higher for High-
Latency Relay attack compared to usability study, respectively.
The longer game completion time and higher error rates for
this Stream Really attack scenario might be attributed to high
network latency between the attacker’s machine and the human-
solvers’ machines.

To overcome the issues presented by network latency for
the participants outside the US, in the second scenario (Small
Game Relay), we reduced the game size by 1/4, to 180x65
pixels. However, the results, as shown in Table V.4, were still
comparable to that of stream relay attack with normal game size,
with longer gameplay time and higher error rates compared
to the usability study. The successful game completion time
was approximately 60% longer, while the error rate was 76%
higher on average than that for usability study. The drag error
rate and click error rates were 16% and 37% higher than
that for usability study, respectively. Analyzing the mean time
using Mann-Whitney U test with Bonferroni correction, we
found statistically significant difference between the mean time
between all pairs of games from usability and Small Game
Relay with p < 0.0001. Although reduced size may have
resulted faster game transmission, smaller game size may have
made it difficult for the users to play the game.

Our last stream relay experiment, Low-Latency Relay, tested
the Stream Relay attack performance when the attacker and the
solver reside relatively nearby (both within the US). The results
of this experiment are depicted in Table V.5. The results show
huge improvement over the previous two scenarios. The time
taken to complete the game is on average about 40% lower
compared to the time taken by participates in High-Latency
and Small Game Relay scenario. Analyzing the data using

1All statistical results reported in this paper are at the 95% confidence level.

Mann-Whitney U test with Bonferroni correction, we found
statistically significant difference between the mean time of
the Ships game and its correspondent in the usability study:
p = 0.048. However, we did not find statistically significant
difference between the mean times of the rest of the games
and their correspondents in the usability study: Animal game:
p = 2.9929, Parking game: p = 0.928, and Shape game:
p = 0.5695. It appears that relatively lower latencies between
the attacker’s machine and solvers’ machines in this scenario
improved the game performance, but it was still at a lower
level compared to that exhibited in the usability study. The
error rates, drag error rate and click error rate were 41%, 1%
and 27% higher for Low-Latency Relay attack compared to
usability study, respectively.

The analysis of the SUS scores for the three relay attack
scenarios is summarized in Table V.2. The mean of the SUS
for the first, second and third relay attack scenarios came to
be 59, 57 and 65.11, respectively, which is consistently lower
than the mean SUS score obtained from the usability study.
Comparing SUS score between the usability study and each of
the three relay attack scenarios, using Mann-Whitney U test
with Bonferroni correction, we found statistically significant
difference between usability study and High-Latency Relay
(p < 0.0001) and between usability study and Small Game
Relay (p = 0.004). Low-Latency Relay did not turn out to be
significantly different from the usability study statistically in
terms of user experience (p = 0.5695).

VI. STREAM RELAY ATTACK DETECTION

In the previous section, we have demonstrated that the DCG
captcha game performance (completion timings and error rates)
in the usability study setting and the game performance in each
of the Stream Relay attack scenarios differs in the average case.
In this section, we set out to investigate whether it is possible
for the captcha service, based on the different gameplay features
and behavioral data, to identify whether an individual gameplay
event (captcha solving instance) conducted by a legitimate user
or to human-solver in the Stream Relay attack. To this end,
we explore the following aspects of the human behavior data
collected for each gameplay instance:

• PlayDuration: overall gameplay time (in seconds) of a
game instance for an honest or remote user.

• IsTimeout: indicating whether a game is unfinished due
to exceeding the maximum time limitation (e.g., 60s).

• TimeStamps: a k-by-1 numeric vector consisting of times-
tamps. Each timestamp is a relative time reference in
millisecond, contributed by both the mouse-dragging event
and the mouse-status event (i.e., left click up/down).

• DraggingObjs: a k-by-1 binary vector. The drag of
an object at the corresponding timestamp is indicated
as 1, otherwise 0. A successful drag-and-drop of an
answer object to the corresponding target object will
have a dragging track ending up with the letter ‘y’ (e.g.,
0,1,1,· · ·,y,0,· · ·). Otherwise, the track ends up with the
letter ‘n’ (e.g., 0,1,1,· · ·,1,n,0,· · ·).
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TABLE VI.1: Class distribution of non-timeout users

Game Usability HighLatency SmallGame LowLatency
Name Relay Relay Relay

(N) (40) (40) (20) (20)
Animal 39 27 12 16
Parking 40 25 15 18
Shape 37 31 18 19
Ships 39 34 12 19

• MouseStatus: a k-by-1 binary vector indicating whether
the left key is pressed at the corresponding timestamp
(i.e., 1 for down and 0 for up, respectively).

A continuous key-press track may not correspond to a drag
track when the mouse misses to grab a moving object. Such
a key-press track is called an invalid mouse drag. When an
invalid mouse drag occurs to a legitimate user, he/she can
usually realize it immediately and take appropriate corrective
actions. Consequently, an invalid mouse drag track will end
relatively quickly, resulting in relatively few timestamps on
the track. In contrast, when the same situation happens during
Stream Relay attack, the remote human-solver may be slow in
response due to the network communication delay, which may
be reflected as either a longer invalid mouse drag track, or a
slow-motion mouse movement that generates many timestamps,
or both.

There are 7 features extracted from the users’ gameplay data,
used as input to train a classifier to differentiate legitimate
users from relay attackers and tested with different machine
learning methods.

1) PlayDuration: as mentioned above.
2) Successful drag rate: the ratio of the number of successful

drag-and-drops to the total number of drag-and-drops.
3) Number of attempts: the number of times the mouse

status changes from ”up” to ”down”.
4) Average dragging time: the sum of time duration of drags

divided by the number of drags.
5) The maximum duration among all invalid mouse drags

in a gameplay instance.
6) Number of timestamps in the invalid mouse drag with

the longest duration.
7) The product of Features 5 and 6.
Both Support Vector Machine (SVM) [6] and K-Nearest

Neighbors (KNN) [9] are tested on 127 (27 � 1) feature
subsets with 6 (2 SVM types, namely C-SVC, Support Vector
Classification, and nu-SVC, with 3 different kernel functions,
namely linear, polynomial, and radial basis functions) and
2 (i.e., Euclidean distance or Minkowski metric) parameter
configurations in SVM and KNN, respectively. In total, 1016
(127 ⇥ 8) different test cases were tested for each game
prototype.

The timeout-user records are excluded from the dataset based
on the consideration that if a game cannot be completed within
a reasonably long game time frame (e.g., 60s), it is reasonable
for the game server to reject the user no matter he/she is an
honest user or a remote relay attack user. Table VI.1 shows
the class distribution of non-timeout users for each game.

In the classification task, the positive class corresponds to a
legitimate user and the negative class corresponds to human-

TABLE VI.2: Results of using the optimal feature subset for each game in the
classification of legitimate user and High-Latency relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 6 C-SVC linear 0.95 0.95 0.98
6,7 nu-SVC poly 0.95 0.95 0.98

Parking 5,6 KNN Euclid 0.86 0.83 0.98
5,6,7 KNN Euclid 0.86 0.83 0.98

Shape 4,5,6,7 nu-SVC rad 0.86 0.82 0.95
Ships 4,5,6 nu-SVC rad 0.93 0.93 0.95

TABLE VI.3: Results of using the common optimal general feature subset for all games
in the classification of legitimate user and High-Latency relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 6 nu-SVC radial 0.95 0.94 0.98
Parking 6 nu-SVC radial 0.85 0.83 0.95
Shape 6 nu-SVC radial 0.80 0.76 0.94
Ships 6 nu-SVC radial 0.92 0.91 0.94

solver relay attacker as denoted below:
• True Positive (TP): legitimate user correctly classified as

legitimate user.
• True Negative (TN): relay attacker correctly classified as

relay attacker.
• False Positive (FP): a relay attacker misclassified as

legitimate user.
• False Negative (FN): a legitimate user misclassified as a

relay attacker.
Three different measures are used to evaluate the classifier’s

performance, namely precision, recall, and accuracy, as defined
in Equations 1 and 2. Of these, recall is more important than
precision because low recall leads to a high rejection rate of
legitimate users, causing user frustrations and compromising
usability. The desired classification result should demonstrate
a sufficiently high recall and a reasonably high precision.
Precision = TP/(TP + FP ), Recall = TP/(TP + FN) (1)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (2)

In the first classification experiment, we build a classifier
for each of the four game types to distinguish a legitimate
user from a High-Latency relay attacker (i.e., corresponding
to the first scenario of the Stream Relay attack). The average
measurement values, as shown in Table VI.2, are calculated
from running a 10-fold cross validation 5 times for each test
case. The results show that High-Latency relay attack can be
detected fairly accurately with a reasonably high precision and
a very high recall. The Animal and the Ships game provided the
best performance, which is expected as both of them require
three drags and drops, which is more than the number of
required drags and drops for the Shape and Parking games.
In order to find a general feature subset that has the highest
average accuracy for all game prototypes, we further ranked
the average accuracy of each feature set in all games. The
results as shown in Table VI.3 indicate that Feature 6 with
SVM gives the highest average accuracy for all games, which
makes sense because this feature exists in all optimal feature
subsets of each game in Table VI.2.

In our second classification experiment, we apply all
the models (i.e., total amount: 1016) trained from the first
experiment on the Small Game Relay dataset in order to test
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TABLE VI.4: Classification results of using the optimal feature subset for each game in
the classification of Small Game relay attackers using the original model

Game Name Feature Subset Method Avg. Accuracy

Animal 6 nu-SVC poly 1.00
6,7 nu-SVC poly 1.00

Parking 4 nu-SVC linear 0.73

Shape 1 nu-SVC linear 1.00
2 nu-SVC linear 1.00

Ships 3 nu-SVC poly 1.00
2,3 nu-SVC poly 1.00

TABLE VI.5: Results of using the common optimal feature subset for all games in the
classification of Small Game relay attackers using the original model (Parking game
should be discarded)

Game Name Feature Subset Method Avg. Accuracy
Animal 1,3,5,6 C-SVC poly 1.00
Parking 1,3,5,6 C-SVC poly 0.13
Shape 1,3,5,6 C-SVC poly 0.94
Ships 1,3,5,6 C-SVC poly 0.92

whether the current model can also detect the relay attackers
who played in a smaller game window). Because the testing
dataset contains only Small Game Relay records (i.e., True
Negative), calculating precision and recall is not meaningful
due to the lack of True Positive data. The classification results
for the optimal feature subset of each game are shown in Table
VI.4. The proposed feature subsets can achieve 100% accuracy
for all games except the Parking game. The optimal feature
subset (i.e., Feature 4) for the Parking game can only achieve
73% accuracy, which indicates that few number of answer
objects in a game is likely not secure against Small Game
Relay attack because the possibility for the relay attackers to
generate invalid mouse clicks is low. In this light, the captcha
service may choose to remove the Parking game from their
game database and use the original training model without
compromising the security against relay attacks or usability.

With the exclusion of the Parking game, the optimal general
feature subset for all the other three games includes Features
‘1, 3, 5, 6’ when SVM with certain parameter setting is used
as shown in Table VI.5. Using Feature ‘6’, the optimal feature
subset for predicting relay attack on games with full game
window size, can also achieve acceptable accuracies (> 89%)
on these three games (Table VI.6) when SVM.

Then, we build a model to distinguish between legitimate
user and Small Game Relay attacker. The obtained results are
shown in Table VI.7. The average recall is 100% for all of the
games expect for the Parking game. The average accuracy and
precision for all the games are 91.5% and 90%, respectively.
TABLE VI.6: Results of using Feature ‘6’ for all games in the classification of Small
Game relay attackers using the original model (Parking game should be discarded)

Game Name Feature Subset Method Avg. Accuracy
Animal 6 nu-SVC poly 1.00
Parking 6 nu-SVC poly 0.07
Shape 6 nu-SVC poly 0.89
Ships 6 nu-SVC poly 0.92

TABLE VI.7: Results of using the optimal feature subset for each game in the
classification of legitimate user and Small Game relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 6,7 C-SVC linear 0.96 0.95 1.00
Parking 2,4,5,6,7,8 C-SVC linear 0.83 0.82 0.97
Shape 3,5,6,7 KNN Euclid 0.92 0.90 1.00
Ships 5,6,8 C-SVC linear 0.95 0.93 1.00

TABLE VI.8: Results of using the optimal feature subset for each game in the
classification of legitimate user and Low-Latency relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 3,5,7 KNN min 0.79 0.77 0.99
Parking 5,6 nu-SVC rad 0.77 0.76 0.97
Shape 1,2,4,5,6,7 nu-SVC rad 0.76 0.75 0.96

Ships 5,6,7 C-SVC poly 0.77 0.75 1.00
3,5,6,7 C-SVC poly 0.77 0.75 1.00

TABLE VI.9: Results of using the optimal feature subset for each game in the
classification of Low-Latency relay attackers using the original model

Game Name Feature Subset Method Avg. Accuracy

Animal 2 nu-SVC poly 0.94
3,4 nu-SVC poly 0.94

Parking
2 nu-SVC poly 1.00
3 nu-SVC poly 1.00

2,3 nu-SVC poly 1.00
Shape 4 nu-SVC poly 1.00
Ships 1,3 nu-SVC poly 1.00

For the last dataset, using the data collected from Low-
Latency relay, we build a classifier for each of the four
game types, which could distinguish a legitimate user (i.e.,
corresponding to the usability records) from a Low-Latency
relay attacker. The average measurement values, as shown
in Table VI.8, are calculated from running a 10-fold cross
validation 5 times for each test case. The results show that
Low-Latency Relay attack can be detected with a high recall
for all games, of above 96%. The Ships and Animal games
seem to provide the best performance, which is justifiable given
the games’ complexity (larger number of target objects than
the other games). However, the classification accuracy is lower
than it is in High-Latency Relay – on average 77% for Low-
Latency compared to 90% for High-Latency. This indicates
that latency may increase the accuracy of attack detection.

In our third and final classification experiment, we used
all the models (i.e., total amount: 1016) trained from the first
experiment to predict the Low-Latency Game Relay dataset.
Because the testing dataset contains only True Negative records,
calculating precision and recall is not meaningful (due to
the same reason as explained in the second experiment). The
classification results using the optimal feature subset of each
game are shown in Table VI.9. The proposed feature subsets
can achieve accuracy of at least 94% for all games.

To measure the overall classification accuracy and recall of
our model, we built a classifier for each of the four game types
using all the collected data from usability study and the three
relay attack scenarios. The average measurement values are
shown in Table VI.10, suggesting that the best average accuracy
and average recall are achieved for the Animal and Ships games,

TABLE VI.10: Results of using the optimal feature subset for each game in classification
of legitimate user and (High- and Low-Latency and Small Game) relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy Precision Recall

Animal 7 C-SVC rad 0.85 0.75 0.97
7 nu-SVC rad 0.85 0.75 0.97

Parking 4,5 C-SVC rad 0.74 0.65 0.76

Shape 2,3,4,5 KNN min 0.78 0.66 0.75
2,3,4,5,7 KNN min 0.78 0.66 0.75

Ships 2,3,4,5,7 C-SVC rad 0.83 0.73 0.87
2,3,4,5,6,7 nu-SVC rad 0.83 0.73 0.87
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followed by the Shape game and then the Parking game. This
suggests that increasing the number of the required drag-and-
drops improves the classification performance. A DCG captcha
service may employ this global model without having to remove
any of the four games from the game database.

VII. DISCUSSION, LIMITATIONS, AND CONCLUSIONS

Our study results offer many primary insights about DCG
captchas. First, we have shown that DCG captchas are quite
usable. Second, and more importantly, we demonstrated that
DCG captchas provide a superior ability of detecting relay
attacks over all well-known types of captchas.

The ability of DCG captchas in detecting streaming-enabled
relay attack is based on two main properties. First, the dynamic
nature of DCG captchas makes streaming the underlying
game a bit tricky, especially over high-latency networks (e.g.,
when the attacker is in the US and the human-solver is in
India) but also in low-latency networks (e.g., when both the
attacker and solvers are located within the US). Second, DCG
captchas require multiple interactions between the user and
captcha. Increasing the number and complexity of the required
interaction increases the ability of relay attack detection. For
example, the accuracy of our relay attack detection algorithm
is much better in case of the Animal and Ships games, which
require three drags-and-drops, than it is in the Parking game
which requires a single drag-and-drop.

The proposed relay detection is quite efficient. For example,
when using SVM, it requires 0.224 msec training with 66
training records, and about 0.087 msec for testing a single
record. Although the training time will increase with the
increase of the number of training instances, the testing that
requires instant response (accept or reject to the user) keeps
the same efficiency. This validates that our proposed method
could be used in an online real-time setting without incurring
noticeable delays.

Our work utilized MTurk system to recruit participants for
the study. On one hand, it allowed us to collect data outside
of the lab from users with varying demographic characteristics.
On the other hand, it limited our ability to test different
screen sharing applications (such as Microsoft Remote Desktop
Protocol, Apple Remote Desktop and TeamViewer) because
apart from RealVNC, all applications require the participants to
install additional client software on their machine. Furthermore,
the amount of money we paid to the participants might not be
the same as what is typically paid to human-solvers in a real
captcha relay attack. This may have implications in terms of
participant motivation in solving the games.

Our study suggests increasing the interaction between the
users and the captcha improves the ability to detect relay attack.
This suggests the need to generate more games with larger
number of target objects to verify our finding, and to assess
the impact of asking the user to drag-and-drop more objects
on the usability of DCG captchas, and on the security against
automated attacks.

The small size of the game, simplicity of the underlying
cognitive task, and the requirements of simple interactions

(drag-and-drop) suggest that DCG captcha would have good
usability on touch screen devices, such as smart phones and
tablets. However, we have not considered these devices in our
current study. Further research is necessary to validate the
usability of DCG captchas and the accuracy of our streaming
attack detection mechanism after incorporating data from touch
screen devices to our training/testing models.
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