
AuntieTuna: Personalized Content-based Phishing Detection

Calvin Ardi John Heidemann
USC/Information Sciences Institute

{calvin, johnh}@isi.edu

Abstract—Phishing sites masquerade as copies of legitimate
sites (“targets”) to fool people into sharing sensitive information
that can then be used for fraud. Current phishing defenses can
be ineffective, with training ignored, blacklists of discovered, bad
sites too slow to pick up new threats, and whitelists of known-
good sites too limiting. We have developed a new technique that
automatically builds personalized lists of target sites (candidates
that may be copied by phish) and then tests sites as a user browses
them. Our approach uses cryptographic hashing of each page’s
rendered Document Object Model (DOM), providing a zero false
positive rate and identifying more than half of detectable phish
in a controlled study. Since each user develops a customized
list of target sites, our approach presents a diverse defense
against phishers. We have prototyped our approach as a Chrome
browser plugin called AuntieTuna, emphasizing usability through
automated and simple manual addition of target sites and clean
reports of potential phish that include context about the targeted
site. AuntieTuna does not slow web browsing time and presents
alerts on phishing pages before users can divulge information.
Our plugin is open-source and has been in use by a few users
for months.

I. INTRODUCTION

Phish are fake websites that masquerade as legitimate
sites, with the goal of tricking unsuspecting visitors to sharing
sensitive information: their credentials, passwords, financial
or other personal information (recently surveyed [16]). In
phishing, an adversary constructs a phishing site from target
content drawn from a legitimate service used by the user. The
phishing site fools the user (as a Trojan horse) into disclosing
information that can then be exploited for identity theft, fraud,
and to compromise other services.

Phishing is an increasing threat, with widespread opportu-
nities as general public makes extensive use of the Internet for
banking and electronic commerce. This threat is especially dire
for financial services and sites with online payment and their
users: an attacker can use stolen credentials to steal money or
make fraudulent transactions. Sophisticated attacks also target
specific individuals in spear phishing attempts, customizing e-
mail with personal information to draw individuals to specific
Trojan-horse websites.

Phishing is sometimes seen as a problem of education
and experience, raising the question: “why can’t people just
stop clicking on the bad links?” While studies show training
can help [17], training is expensive and time-intensive, and
other studies show training provides more mixed benefits [5].

Moreover, the user-specific content in spear phishing exploits
social pressures to encourage targets to set aside training and
click. Even with training, ideally technical methods for anti-
phishing would assist users, both naı̈ve and trained.

There are two classes of technical methods to intercept
phishing attempts. Most browsers today detect potential phish-
ing with URL blacklists such as the Google Safe Browsing
API, PhishTank [22], Is It Phishing [23] service, and the
Netcraft toolbar [21]. The browser checks each website a web
user visits against a list of known bad sites that is typically
cached locally and refreshed regularly. While effective at
stopping previously known threats, blacklists must react to new
threats as they are discovered, leaving an inevitable period of
vulnerability where users are vulnerable. Attackers exploit this
gap by changing URLs for phishing sites frequently. Moreover,
while blacklists may protect against common phishing sites,
they are unlikely to track “pop-up” sites used for spear-
phishing against a small number of targeted victims.

Alternatively, whitelists can identify pre-determined web-
sites as “known-good”. Whitelists thus avoid the race to
identify and add new phishing sites, but have their own delays
in approving new sites, and by definition prohibits (or strongly
discourages) use of sites off the list. This delay makes them
too limited for many users.

Our goal is to create a system that provides proactive
and personalized detection of phishing websites. Our mecha-
nism provides proactive in-browser testing of visited websites
against likely phishing content, providing rapid defense with
neither the delay of blacklist identification nor the strict
constraints of whitelists. Each user can personalize the sites
they visit and identify target content that might be used in
phishing. Personalization customizes defenses and generates
uncertainty in attackers, increasing protection against targeted,
user-specific sites and spear phishing. Personalization can also
augment shared, centralized lists.

In this paper we introduce AuntieTuna, a web browser
plugin that provides anti-phishing alerts as a user browses. Our
approach includes a usable and simple mechanism for users
to identify and customize protection against their own target
sites. Our system indexes the target site’s content and watches
for this content to appear at incorrect sites as a sign of a
active phishing. While prior work has visually compared good
website layouts with potential phishing sites [27], we focus on
the content itself using cryptographic hashing. Our insight is
that cryptographic hashing of page contents allows precise and
efficient bulk identification of content reuse at phishing sites.

The contribution of this paper is to show that our pre-
cise phishing detection using cryptographic hashing and user-
personalized lists is both usable and effective. We emphasize
usability through automated and simple manual addition of
target sites and clean reports of potential phish that include
context about the targeted site. Since each user develops a

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
USEC ’16, 21 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-42-8
http://dx.doi.org/10.14722/usec.2016.23012



Fig. 1. Users click the “Personalize Button” on websites to add to whitelist
of known-good sites.

Fig. 2. Example of actively preventing a user from accessing a phishing site.

customized list of target sites, our approach presents a diverse
defense against phishers. Our approach is precise, with zero
false positives. We show that our algorithms detect a majority
of phish, and are robust to several countermeasures, although
they can be defeated by techniques such as a phishing site us-
ing only new images. AuntieTuna does not slow web browsing
time and presents alerts on phishing pages before users can
divulge information. A small number of alpha users have been
using the browser extension, and we have released our exten-
sion and source code at https://ant.isi.edu/software/antiphish.

II. RELATED WORK

Given the importance of phishing, many anti-phishing
solutions have been proposed. We build on prior experience in
phish detection, and anti-phish user interfaces and education.

1) Automating Phish Detection: There are many different
approaches to detecting phish. Anti-phishing blacklists, page
heuristics, or a combination of both are used in browser
toolbars [22], [23], [21], but aren’t always effective against
phishing attacks [26], performing poorly even when blacklists
were kept up-to-date [28]. Our plugin proactively detects phish
using target content from known good sites, thus avoiding the
delay in updating and retrieving blacklists.

Machine learning can also be used to detect phish. By
converting a website’s content [14] or URL and domain
properties [20] into a set of features or feature vectors,
machine learning can look for websites that are similar, but
have anomalous properties, such as “right” content in the
“wrong” place. Computer vision techniques [2] can also be
used to visually match the images on visited webpages with
the originals. While these techniques can detect new phish,
their approximate matching risk many false positives, and their
high computational requirements make them difficult to run
on clients. We instead employ precise content matching using
cryptographic hashing to avoid false positives, and to provide
lightweight detection that can run in a client’s browser without
centralized support.

Other approaches measure the similarity of phish and
original sites by looking at their content and structure. Simi-
larities can be computed based on the website’s visual features
(text content, styles and layout) [19], or object positioning
in their Document Object Model (DOM) trees [24], [27].
CANTINA [29] sends signatures based on the highest ranked
words from the page’s content through search engines and
assumes valid content will be highly ranked in the results.

Each of these approaches use approximate matching, while
we apply cryptographic hashing to avoid false positives when
detecting phish that reuse content from the original website.

Although not for phishing, CodeShield uses personalized
whitelists to identify good PC-based applications [11]. Users
must verify newly installed applications, and the process re-
quires multiple steps to encourage careful review. We too apply
personalized lists to anti-phishing detection, but we emphasize
fully automated or easy manual addition to the whitelist.

2) Anti-Phishing User Interfaces: User interfaces in anti-
phishing tools play an important role in determining whether
a user clicks on phish after it has been detected. There is
the need for clear, non-subtle visual indicators of security
problems [10]. Zhang et al. [28] found that while some user
interfaces used colored indicators to signal if a website was
legitimate or phish, they also found a lack of meaningful
user interaction once a warning has been presented. Egelman
et al. [8] found that most users responded positively when
active warnings interrupt the user, prevent clear, recommended
actions, and are not easily closeable. Inspired by this work, our
active warnings follow these guidelines, interrupting the page
and providing information on our choice and education.

Other approaches seek to prevent information disclosure by
focusing on the site’s login page. Dhamija and Tygar [7] pro-
pose using a memorable “visual hash” as a prominent graphical
indicator that the site being accessed is secure and trusted.
Google’s Password Alert [13] binds together the known-good
website and the user’s login details; if the password is reused or
entered somewhere else, the user is warned about phish and
asked to change their password. We instead focus on phish
website detection, but our approach could be used with these
alternatives.

3) The Role of User Education: Multiple studies explore
why users are susceptible to phish and how to educate users
against phishing attacks. For example, they encourage users to
recognize indicators such as incorrect URLs or broken locks
(TLS) that are around the main content (in the browser user
interface) that indicate something is amiss.

Herley et al. [15] found the mental costs in frequent
evaluation of such indicators exceeds its benefits; users often
perceive the consequences of getting phished as low and
ignore warnings. Additional studies [17], [18] showed that
anti-phishing training for users was effective when provided
immediately as the user clicks on phish in email and when

2

https://ant.isi.edu/software/antiphish


Fig. 3. Detecting a phishing attempt against PayPal. The known good site site (left) is visually similar to the phish (right), and common elements are identified
by identical hashes of DOM elements (red values in the middle columns).

done periodically. We follow these studies’ recommendations
by working silently without any requisite indicators and inter-
vening with an active alert only when we detect a phishing
website. We also point the user to resources where they can
learn more about phishing and how to avoid falling victim to
phishing attacks.

III. DESIGN FOR USER-CUSTOMIZABLE ANTI-PHISHING

Our anti-phishing system consists of three components:
a browser-plugin watches websites a user tries to browse
(§ III-D). Using our detection algorithms (§ III-B), it com-
pares each new website against a list of target content by
comparing cryptographic hashes: a detected phish will have
a match in the content list and not be in a whitelist of known-
good sites. Finally, we allow users to personalize the list of
target content (§ III-A), customizing a common list of well
known phishing targets. We describe these approaches below
and in § III-C highlight our choices that optimize usability.

A. Identifying and Personalizing Target Content

A central goal of our approach is easy-to-use, per-user
customization. Here we describe how and what information
is collected, and in § III-C we discuss usability.

Detection is based on looking for target content in un-
expected places. Users identify both target content and its
expected locations by marking sites that may be targets for
phishing using a simple web button (Figure 1). This button
adds that site to the whitelist of known-good sites, and adds
hashes that identify the content of that page to the list of target
content. This approach is analogous to public key pinning [9],
and allows each user to build a custom list of sites they trust.
(In § III-A we show how even this button can be automated.)

Once a site is marked as known-good, its content may
evolve over time. We update our content for known-good
targets by opportunistically rehashing these pages when a user
revisits their URLs after some time.

We choose to build and store the whitelist and target
content in each client, distributing detection and avoiding any
centralized infrastructure. (Some blacklists or whitelists, like
Google’s Safe Browsing API or an HTTP proxy, depend on
centralized infrastructure and require global network connec-
tivity and infrastructure managed by a third-party.)

We expect to draw on both centralized and per-user
whitelists and target content. Organizations may distribute
target content lists, either generated centrally or aggregated
from many users.

But we expect user-customization to help build robust
resistance to phishing in two ways. First, some sites offer user-
specific “skins”. For example, users can indicate a preferred
background or color scheme in Google and Yahoo’s websites.
By selecting these specific versions of these popular sites
users tune anti-phishing to their profiles. Second, individuals
often access smaller sites that are specific to their behavior,
yet are vulnerable sources to spear phishing. For example,
a company may have a public-facing internal portal that
requires authentication. By making each user’s defenses more
diverse and unique, we avoid a “monoculture” of anti-phishing
filtering [12], decreasing the effectiveness of bulk attacks.

We augment manual identification of pages with a fully
automatic approach: every time a user agrees to save the
password for a web page, we automatically mark that site
as a phishing target. This approach leverages the existing
indication of user trust (save my password) to provide a form
of Trust On First Use [25]. We are in the process of integrating
this method into our system; when deployed, it will provide
protection without any need for user interaction (the button
can be eliminated).

B. Processing Pages: Hashing and Detection

Our process of identifying target content and matching
it against new pages to detect phishing uses cryptographic
hashing. We first describe how this process is used to add a
known good page to target content and the whitelist, then how

3



Fig. 4. Implementation diagram of the AuntieTuna anti-phishing plugin.

it is used to check unknown content for potential phishing.
We have explored the use of hashing previously to detect
plagiarism and content duplication for advertising on the
web [3]; here we consider how it can be used specifically
for anti-phishing.

1) Processing a Known-Good Page: When a web page is
identified as known-good (as described previously, § III-A), we
must record the content and the URL of that website. We place
the URL on the whitelist. To track the content and process a
given web page, we walk the page’s DOM representation in
the browser, breaking it into “chunks” delimited by <p> and
<div> tags. (Other delimiters are possible, but we found these
to be most effective). We remember the contents of each chunk
25 or more characters in length by computing its cryptographic
hash with SHA-256 [1] (we filter out common, small-length
chunks to avoid affecting our results). We then save the hashes
on the client’s local storage and add the URL to a whitelist of
sites allowed to host this content.

In our current use, both sets are relatively small and is
stored directly in the client. Efficient techniques such as Bloom
filters allow very large sets to be compressed to fixed-size
storage and compared very efficiently [4].

The left part of Figure 3 shows a known good page, with
the PayPal login page taken on 2015-12-08 as an example.
The truncated hashes of each DOM element are listed in the
middle column (7667cd7, b3a4ac5, etc.).

Target content of some sites will evolve over time. Oppor-
tunistic recrawl keeps our record of those pages fresh: when
a user re-accesses a page in the whitelist after some time, we
use that opportunity to refresh our hashes of their content.

2) Processing Unknown Content: We process an unknown
page for potential phishing in the same way: we walk the
DOM, breaking it into chunks and computing the hash of each
chunk. We then compare the number of chunks that match the
list of target content. If the number of matches is greater than a
threshold, we flag the webpage as suspected phish and actively
prevent the user from accessing it (Figure 2).

The right page in Figure 3 shows an actual PayPal phishing
page we copied on 2015-12-08 (the URL has been obscured
for privacy; the phish is no longer accessible as of 2015-12-
10). Visually, the sites are identical to mislead a user. The
red hashes in the middle indicate that this similarity was
accomplished by copying graphical and text elements. In fact,

not all of the duplication is visible—we detect duplication in a
hidden error message div (indicated with dotted arrows). This
duplication supports our automated detection.

Detection of a phish results in an overlay that obscures
the content (Figure 2). The alert encourages users to back-off
and gives links to web pages that can help them learn about
phishing and avoid falling victim to phish. We also provide
users with a link to the “most similar trusted page” as method
of explaining why we distrust this page. We also allow an
escape mechanism to handle false positives, but presented in
a manner to discourage and caution its use (initially hidden
under the “Advanced” option).

C. Design Choices for Usability

Our approach to maximizing the usability of our anti-
phishing methods is based on minimizing user interaction and
no-knobs (“hands free”) use. We adopt these goals based on
studies which show that users reject security advice when it
poses too great of a burden relative to its perceived bene-
fits [15], and the need for clear, non-subtle visual indicators
of security problems [10]. These goals reflect in four design
choices: full automation of building user-customized lists of
target content, minimal controls for optional user additions,
suppression of untrusted content, and some explanation and
reasoning for that suppression.

First, we can fully automate user customization by integrat-
ing identification of target content with password storage, an
existing method of managing trust. Although we optionally
allow users to manually flag pages as target content, and
organizations to distribute centralized lists of trusted sites, this
automation customizes phishing defense for each user with no
explicit effort. In addition, our manual interface is very simple:
use one button to add a site (Figure 1).

We actively suppress the visited webpage if it is suspected
phish. Prior studies have shown that users often ignore passive
warnings [8] and continue through to dangerous content. We
explicitly choose not to redirect the user to their intended
website automatically, so as to discourage users from becoming
complacent using phishing links.

Finally, rather than treat AuntieTuna as a black box, we
provide the user some background about why we found the
candidate site as a phish by including a link to the “closest
trusted site”. We provide this link as content, not as an assis-
tance to redirect, and accompany it with links to information
about phishing.

D. Implementation of Anti-Phishing in AuntieTuna

Our plugin is implemented as an extension to the Google
Chrome browser, written in JavaScript and using only the
Chrome APIs. This section summarizes our implementation
choices to operate with the security model for Chrome plug-
ins [6]. We expect that our approach can port to other browsers.

AuntieTuna consists of three components (Figure 4): the
Personalize Button, Page Watcher, and Storage Manager. In
the Chrome model, these components run as a Browser Action,
Content Script, and Core Extension, respectively.

4



1) Page Processing Workflow: Processing pages begins
with users personalizing their list of target content by using the
Personalize Button (located on the browser toolbar, Figure 1)
on known-good websites. Pressing the button signals to the
Page Watcher to mark as known good and chunk the current
webpage. The Storage Manager stores the resulting hashes and
site URL in the list of target content and whitelist of known-
good sites, respectively. The appended list of target content is
ready for use immediately.

The Page Watcher runs continuously in the background,
watching for and processing unknown pages not found in the
whitelist of known-good sites. When the page has rendered, the
Page Watcher processes the page as described in § III-B and,
if the page is suspected phish, injects an overlay (Figure 2) on
the current page to prevent the user from accessing it.

2) Platform-Specific Customizations: Implementing our
browser plugin required changes to our discovery and detection
methodology from our prior work [3]. Chrome’s security
model prevents our extension from accessing the raw under-
lying HTML of sites, but it does allow access to the parsed
version of the page in the form of the page’s document object
model (DOM). Because the DOM is the processed (rendered)
version of the underlying HTML, it can be modified by
scripts on the page or other concurrent extensions, potentially
reducing the accuracy of our phish detection mechanism. (We
discuss this problem and possible countermeasures in § IV-B.)
Additionally, the rendered DOM is browser-specific. Thus, the
hashes in a given user’s phishing target content may not apply
to users of other browsers.

We generate and store all hashes and lists in the client
browser, making our methodology completely self-contained,
without dependence on outside infrastructure or processing.
Our approach runs after page render time, imposing no in-
crease in page render time. However, processing time provides
a gap where users are briefly un-alerted about a potential phish
attempt. In § IV-C we show that we are faster than user reaction
time on PC-class hardware, but this gap will be larger on lower-
end hardware such as tablets or mobile phones.

We can reduce classification time of unknown pages time
by using Bloom filters to speed comparison of the contents
of a new page against our list of target content. We can
eliminate false positives that occur with Bloom filters with a
two-tiered search: if a hash of some content chunk is “found”
in the Bloom filter, do another search in the full list of target
content. Since we expect most searches to return negative, the
amortized cost of doing a full search is sufficiently negligible
to maintain a zero false-positive detection rate. We have not
yet implemented this optimization.

IV. EFFECTIVENESS OF PHISHING DETECTION

To evaluate AuntieTuna, we consider its effectiveness today
and in the face of potential countermeasures. We also examine
its effects on browser performance and in our usage to date.

A. Evaluation of Phish Detection Accuracy

We now evaluate the effectiveness of the core algorithms
of AuntieTuna. This is our first evaluation of DOM-based
hashing, although it builds on our prior work evaluating
duplication of HTML [3]. Since we do not have access to a

TABLE I. CLASSIFICATION OF PHISH IN TWO DAYS OF PHISHTANK
REPORTS, BASED ON DETECTION AGAINST PAYPAL. SENSITIVITY =

58.8%, SPECIFICITY = 100%.

Description Num. Pages %
Candidates 2374

Unavailable 486
Ripped 1888

Other 1764 TN = 1764
PayPal (image-based, removed) 39
PayPal 85 100.0 FP = 0

Successfully detected 50 58.8 TP = 50
Direct rips 35
Whitespace norm. 8
JavaScript obfuscation 7

Custom-styled with minor PayPal content 35 41.2 FN = 35

large source of spam, we approximate this system as follows.
We target PayPal phishing, and fill our target content list
with current and recent PayPal U.S., U.K., and French home
pages (Sept. 2014, plus Jan. 2012 to Aug. 2013) loaded from
archive.org. We gather six variations on these three web pages,
resulting in a target content list containing 311 distinct chunks
longer than 25 characters.

We test AuntieTuna against a suspected phish stream of
2374 URLs drawn from from PhishTank [22] over 2 days
(2014-09-24 and 2014-09-25). PhishTank is a crowd-sourced
anti-phishing service. Since the lifetime of a phish is short, we
automatically rip the target of each suspected phishing link. We
compare each suspected phish against our target content list
with our algorithm (§ III-B) with a detection threshold of one
or more non-trivial chunks.

To evaluate ground truth, we manually examine the sus-
pected phish stream and identify 124 (of the 1888) as PayPal
phish attempts. We further identify 85 of the remaining sites as
phish utilizing content from PayPal. Our mechanism detects 50
(58.8%) pages that pass the detection threshold: 43 are direct
rips detected with no normalization applied, and an additional
7 are detected with whitespace normalization. Table I classifies
the type of techniques each phishing site uses.

Without taking steps to defeat countermeasures, our ap-
proach has a fairly high false negative rate with a sensitivity
of 58.8%. However, our targeted dataset has zero false pos-
itives and a specificity of 100%. This experiment suggests
our approach is a valuable additional technical method to
automatically block phishing attempts, at least against our
sample. Evaluating against more diverse phishing sites and
use by more users is important future work. We next discuss
hardening our approach to countermeasures.

B. Resisting Potential Countermeasures

While most phish copy much of the original site, other
phish use different techniques to attack their targets, sometimes
deliberately obscuring the source of their content. We discuss
how these countermeasures affect the accuracy of our phish
detection, and strategies to work around them.

All phish are constrained by the requirement that they
must look very similar to the original. Most simply copy
content from the original, prompting our approach. However,
others obscure that content. A fair number of phish (39 of the
124 PayPal-appearing phish) replace the original content with
images. Our approach cannot see through this concealment
and we exclude these from our list of PayPal phish that are

5

archive.org


potentially detectable by our method. Fortunately, such sites
can be obvious (for example, text is not selectable, or fonts
vary by platform), and are subject to image analysis.

We next focus on the 85 potentially detectable (non-image-
based) PayPal phish: of these we detect 50 phish (58.8%).

Sites can vary the original site’s HTML slightly, replacing
whitespace or making other changes that do not affect the
visual result. The DOM passes some variations through, thus
we normalize whitespace as part of our processing, detecting 8
(9.4%) sites that we would otherwise miss. A phisher willing
to mutate every element will evade our approach, however,
we argue that such a phish would also appear suspicious (due
to misspellings or awkward phrasings) and is more work to
generate than cut-and-paste.

More challenging are sites that generate or obfuscate
content dynamically with JavaScript to elude web crawlers that
look for and process static HTML only. Because we parse the
DOM after any JavaScript has run, we can see through this
obfuscation. Manual identification showed 7 suspected PayPal
phish (8.2% of detectable phish) that used JavaScript that we
find in DOM-based analysis but not in HTML alone: we found
all 7 of them.

A phisher could use use homographs (look-alike charac-
ters) in ASCII or Unicode (e.g., Greek ρ for “P”) to spoof
the original. Our approach cannot currently see through these
techniques, although we could potentially normalize characters
by shape just as we normalize whitespace.

Finally, we see a fair number (35 pages, 41%) of potentially
detectable phish construct an original phishing site using only a
small amount of content taken from the original site. We miss
these phish, although we expect their deviation from target
content makes them less believable.

We conclude that we miss a number of phish that use
images or copy minimally from the target, however we detect
more than half of phish with no false positives, thus providing
a useful service. Wide use of our approach will of course
cause phishers to move to other types of attacks or target the
thresholds our tool uses. Personalization makes such counter-
measures difficult, and we would consider “raising the bar” on
rip-and-copy attacks a partial victory.

C. Browser Performance with AuntieTuna

A concern with any plugin is that it slows the browsing
experience, so we next examine the computation performed by
our plugin. AuntieTuna introduces zero increase in page render
time because we process the page only after it has finished
rendering. Thus the performance of AuntieTuna is not about a
“slower web”, but instead about a potential gap between when
the page is visible and when we detect it as phish.

We run our benchmarks on four sites using Google Chrome
(v47.0.2526.80, 64-bit, 2015-12-08) with the list of target
content from § IV-A. We test on a PC running OS X 10.10.5
with an Intel i7-2760QM processor and 8 GB of memory.

In Table II we report mean and SD page render and
AuntieTuna execution times taken from five runs. We find
that our plugin’s execution time ranges between 20–167 ms on
each page. There is quite a bit of variation depending on the

TABLE II. PAGE RENDER AND AUNTIETUNA EXECUTION TIMES

Page Render AuntieTuna
Website ms (σ ms) ms (σ ms)
google.com 327 (15) 144 (6)
paypal.com 349 (5) 20 (2)
nytimes.com 5316 (1632) 167 (6)
en.wikipedia.org 321 (7) 75 (3)

complexity of the page. Only for the highly-optimized Google
home page does scan time approach page render time; in other
cases it is small in relative to page render time. However, we
again emphasize that analysis happens after rendering and in
parallel with viewing, so user browsing is not affected.

A more serious concern is if we can put up a warning
fast enough, before a user divulges private information, since
they will see content while we process the page. Our longest
scanning time is 167 ms; while this one-sixth of a second will
be noticeable, we believe there are few users who could enter
their information and click submit in this short amount of time.

A great deal of web use today occurs on less powerful
hardware with tablet computers or mobile phones. We have
not evaluated our plugin on these devices. While our plugin
will be slower on slower computers, user data entry will also
be slower. Porting our plugin to mobile devices is future work.

We conclude that AuntieTuna has no effect on web brows-
ing performance on reasonably powerful hardware, and it runs
fast enough to protect users.

D. Experiences in Real-World Usage

We have been using the browser extension continuously
since March 31, 2015. So far the extension works reasonably
well, detecting the known phish we use for testing without
noticeably affecting the speed of normal browsing operations.
We have not yet seen any real phish, nor any false positives.
A larger and formal user study remains as future work.

V. CONCLUSIONS

This paper has described a new approach to phish detection
and its realization in AuntieTuna, a Chrome browser plugin. We
described our design decisions to make our approach easy to
use, with automatic or simple manual addition of targets and
clean reports of potential phish. We have shown our approach
is precise (no false positives), that it detects a majority of
phish in controlled experiments, and that it does not affect
browsing speed and it presents alerts before users can divulge
information. We have released our extension and source code
on our website at https://ant.isi.edu/software/antiphish.

ACKNOWLEDGMENT

We thank Danyong Zhao for initial exploration in developing a
browser plugin. Research by Calvin Ardi and John Heidemann in
this paper is partially sponsored by the Department of Homeland
Security (DHS) Science and Technology Directorate, HSARPA, Cy-
ber Security Division, via SPAWAR Systems Center Pacific under
Contract N66001-13-C-3001, and via BAA 11-01-RIKA and Air
Force Research Laboratory, Information Directorate under agreement
numbers FA8750-12-2-0344 and FA8750-15-2-0224. The U.S. Gov-
ernment is authorized to make reprints for Governmental purposes
notwithstanding any copyright. The views contained herein are those
of the authors and do not necessarily represent those of DHS or the
U.S. Government.

6

https://ant.isi.edu/software/antiphish


REFERENCES

[1] D. E. 3rd and T. Hansen, “US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF),” RFC 6234 (Informational), Internet
Engineering Task Force, May 2011.

[2] S. Afroz and R. Greenstadt, “Phishzoo: Detecting phishing websites
by looking at them,” in Semantic Computing (ICSC), 2011 Fifth IEEE
International Conference on. IEEE, 2011.

[3] C. Ardi and J. Heidemann, “Web-scale content reuse detection (ex-
tended),” USC/ISI, Tech. Rep. ISI-TR-692, June 2014.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, Jul. 1970.

[5] D. D. Caputo, S. L. Pfleeger, J. D. Freeman, and M. E. Johnson, “Going
spear phishing: Exploring embedded training and awareness,” IEEE
Signal Processing Magazine, vol. 12, no. 1, Jan. 2014.

[6] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the Google
Chrome extension security architecture,” in USENIX Security Sympo-
sium, 2012.

[7] R. Dhamija and J. D. Tygar, “The battle against phishing: Dynamic
security skins,” in Proceedings of the 2005 Symposium on Usable
Privacy and Security, ser. SOUPS ’05. ACM, 2005.

[8] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: An
empirical study of the effectiveness of web browser phishing warnings,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’08. ACM, 2008.

[9] C. Evans, C. Palmer, and R. Sleevi, “Operation of anycast services,”
Internet Request For Comments, RFC 7469, Dec. 2015.

[10] S. Furnell, “Phishing: can we spot the signs?” Computer Fraud &
Security, vol. 2007, no. 3, 2007.

[11] C. Gates, N. Li, J. Chen, and R. Proctor, “Codeshield: Towards per-
sonalized application whitelisting,” in Proceedings of the 28th Annual
Computer Security Applications Conference, ser. ACSAC ’12.

[12] D. Geer et al., “Cyberinsecurity: The cost of monopoly: How the
dominance of Microsoft’s products poses a risk to security,” Computer
and Communications Industry Association, Tech. Rep., Sept. 24 2003.

[13] Google, “Password Alert,” Apr. 2015.
[14] R. Gowtham and I. Krishnamurthi, “Phishtackle–a web services archi-

tecture for anti-phishing,” Cluster Computing, vol. 17, no. 3, Sep. 2014.
[15] C. Herley, “So long, and no thanks for the externalities: The rational

rejection of security advice by users,” in Proceedings of the 2009
Workshop on New Security Paradigms Workshop, ser. NSPW ’09.

[16] J. Hong, “The state of phishing attacks,” Communications of the ACM,
vol. 55, no. 1, Jan. 2012.

[17] P. Kumaraguru et al., “School of phish: A real-world evaluation of
anti-phishing training,” in Proceedings of the 5th Symposum on Usable
Privcay and Security. Mountain View, CA, USA: ACM, Jul. 2009.

[18] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and J. Hong,
“Teaching johnny not to fall for phish,” ACM Trans. Internet Technol.,
vol. 10, no. 2, Jun. 2010.

[19] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An antiphishing strategy
based on visual similarity assessment,” Internet Computing, IEEE,
vol. 10, no. 2, 2006.

[20] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond black-
lists: Learning to detect malicious web sites from suspicious urls,” in
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’09. ACM, 2009.

[21] Netcraft Ltd., “Netcraft extension: Phishing protection and site reports,”
Available at: http://toolbar.netcraft.com/, 2015.

[22] OpenDNS, “PhishTank,” Available at: http://www.phishtank.com, 2015.

[23] V. Retro, “isitPhishing—anti phishing tools and informations,” Available
at: http://www.isitphishing.org/, 2015.

[24] A. P. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi, “A layout-
similarity-based approach for detecting phishing pages,” in Security
and Privacy in Communications Networks and the Workshops, 2007.
SecureComm 2007. Third International Conference on, Sept 2007.

[25] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
SSH-style host authentication with multi-path probing,” in Proceedings
of the USENIX Conference Proceedings. USENIX, Jun. 2008.

[26] M. Wu, R. C. Miller, and S. L. Garfinkel, “Do security toolbars actually
prevent phishing attacks?” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’06. ACM, 2006.

[27] W. Zhang, H. Lu, B. Xu, and H. Yang, “Web phishing detection based
on page spatial layout similarity,” Informatica, vol. 37, no. 3, 2013.

[28] Y. Zhang, S. Egelman, L. Cranor, and J. Hong, “Phinding Phish:
Evaluating Anti-Phishing Tools,” in Proceedings of the 14th Annual
Network and Distributed System Security Symposium, ser. NDSS ’07.

[29] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
International Conference on World Wide Web, ser. WWW ’07.

7

http://toolbar.netcraft.com/
http://www.phishtank.com
http://www.isitphishing.org/

	Introduction
	Related Work
	Automating Phish Detection
	Anti-Phishing User Interfaces
	The Role of User Education


	Design for User-customizable Anti-Phishing
	Identifying and Personalizing Target Content
	Processing Pages: Hashing and Detection
	Processing a Known-Good Page
	Processing Unknown Content

	Design Choices for Usability
	Implementation of Anti-Phishing in AuntieTuna
	Page Processing Workflow
	Platform-Specific Customizations


	Effectiveness of Phishing Detection
	Evaluation of Phish Detection Accuracy
	Resisting Potential Countermeasures
	Browser Performance with AuntieTuna
	Experiences in Real-World Usage

	Conclusions
	References

