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Abstract—Pattern lock scheme in which users connect 4-9
dots in a 3 × 3 grid is one of the most popular authentication
methods on mobile devices. However, numerous research studies
show that users choose patterns from a small space which makes
them vulnerable to a variety of attacks such as guessing attacks,
shoulder-surfing attacks and smudge attacks.

In this work, we enhance the existing 3 × 3 interface with
a visual indicator mechanism and demonstrate how this slight
modification can influence users’ pattern choices, thereby im-
proving the security of the pattern lock scheme. We refer to this
enhanced interface as TinPal. As users draw their pattern, TinPal
highlights the next set of unconnected dots that can be reached
from the currently connected dot. We gauge the impact of this
highlighting mechanism on users’ pattern choices by performing
a comparative study of two groups, where one group creates
pattern using the existing interface while the other group creates
pattern using TinPal. The study results show that participants
who used TinPal created more secure patterns than participants
who used the existing interface.

I. INTRODUCTION

Today smartphones have become an integral part of peo-
ple’s daily lives. According to Ericsson mobility report [2],
the number of worldwide smartphone subscriptions has already
crossed 3 billion mark and it is expected to reach 6.8 billion
by year 2022. People use smartphones for a wide range of
applications which include sending emails, browsing web,
chatting, making audio/video calls, taking pictures and doing
financial transactions. Consequently, these portable devices
are a gateway to a plethora of personal and sensitive infor-
mation. Therefore, smartphones come equipped with several
authentication mechanisms such as number passwords (PINs),
textual passwords, graphical passwords and biometrics (e.g.,
fingerprint, face and iris).

Graphical passwords are considered as a usable alternative
to textual passwords since many studies [19], [17], [27] show
that humans have remarkable ability to remember visual infor-
mation than textual information. The most prominent example
of graphical passwords is Google’s recall-based Android Pat-
tern Lock Scheme in which users connect a series of dots in
3× 3 grid to unlock their phone. This pattern lock scheme is
perceived to be more usable than PINs [29]. Further, biometric
alternatives are available only in high-end devices and are
nevertheless considered to be less secure than 3 × 3 patterns
[5]. Moreover, the use of biometric security poses huge privacy
risks [1].

Although 3×3 patterns are considered to be usable, they are
prone to a wide range of attacks including guessing attacks,
shoulder-surfing attacks and smudge attacks. Many research
studies [25], [8], [24] show that users’ pattern choices are
highly biased and drawn from a small space. For instance,
patterns resembling English letters such as ‘Z’, ‘S’, ‘M’, ‘N’,
‘L’, and ‘G’ are very prevalent among users. Further, a large
fraction of patterns are composed using simple strokes which
could be easily memorized by an observer [28]. The char-
acteristics such as knight moves, overlaps, direction changes,
intersections (crosses) which enhance the visual complexity of
patterns are almost never used. The pattern lock scheme is
also shown to be susceptible to smudge attack [9], a type of
side-channel attack in which the attacker infers user’s pattern
using physical traces left (by fingers) on the screen. Further
related work [7] even suggests that it is possible to recover
the entire pattern from the partial traces by exploiting users’
biased choices.

Notations. To make it easier when referring to a particular
pattern, we label all dots arranged in the 3 × 3 grid in row-
major order, where the upper-left dot is labelled as 1 and the
lower-right dot is labelled as 9 as shown in Figure 1a. A
pattern is therefore represented as an ordered sequence of dots,
e.g., 38519647. When referring to a line segment (connection)
between two consecutive dots d1 and d2 in a pattern, we use
the notation d1 → d2. For instance, the line segment between
consecutive dots 3 and 8 in the pattern 9538127 is represented
as 3→ 8.

The rules [25] for creating patterns are given below. Due to
these restrictions, the total number of 3×3 patterns is 389,112.
(i) At least 4 dots must be chosen.
(ii) No dot can be used twice.
(iii) Only straight lines are allowed.
(iv) One cannot jump over dots not visited before.

We observed that the first three rules (i), (ii) and (iii) are
enforced by the existing pattern lock interface [3], however
there is no mechanism in the existing interface to make users
aware of the rule (iv). The fourth rule implies that dot di can
be connected to dot dj directly, if all dots along the (straight
line) path are already connected. For instance, one can connect
dot 1 to dot 3 (1→ 3) if dot 2 is already connected or connect
dot 2 directly to dot 8 (2 → 8) if dot 5 is already connected
(Figure 1a). The existing pattern lock interface never informs
users about such connection options which might result in
constrained pattern choices. If these kind of connections are
never used in the patterns, then the theoretical search space
is reduced to just 139,880, i.e., about 1/3rd of 389,112. We
conjecture that many users are simply not aware of all possible
connection choices during pattern creation due to which they
resort to insecure behaviour.
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(a) 3× 3 labels (b) Corner (Direct) (c) Corner (Overlap)

(d) Center (e) Side (Direct) (f) Side (Overlap)

Fig. 1: Connectivity rules for corner, center and side dots. There are
two types of connectivity rules, direct and overlap.

The connectivity rules in the pattern lock scheme are not
easy to comprehend. For instance, consider the connectivity
rules pertaining to dot 1.

1) From dot 1, one can connect any one of the five
segments, 1→ 2, 1→ 4, 1→ 5, 1→ 6 or 1→ 8 as
depicted in Figure 1b. We refer to such connectivity
rules as direct rules.

2) From dot 1, one can also join 1→ 3 if dot 2 is already
connected. This connection can happen in two ways.

a) Overlapping segment : It occurs when the
connection to dot 2 is immediately followed
by dots 1 and 3. In this case, the line segment
2 → 1 is covered completely by the line
segment 1→ 3. An example of such pattern
is 5213847 (Figure 2a).

b) Overlapping dot : It occurs when the con-
nection to dot 2 is followed by some other
dot(s) followed by dots 1 and 3. An example
of such pattern is 62413589 (Figure 2b).

Similarly, one can also join 1→ 7 if dot 4 is already
connected or join 1→ 9 if dot 5 is already connected
(Figure 1c). We refer to such conditional connectivity
rules as overlap rules.

(a) Pattern 5213847 (b) Pattern 62413589 (c) Pattern 528463971

Fig. 2: Illustration of direct and overlap rules.

There is no mechanism available in the existing pattern lock
interface to inform users about the different connectivity rules
(direct and overlap). Spelling out these connectivity rules in
text-form is a tedious task. This problem is further aggravated
since the connectivity depends on whether the dot is located
at the corner, center or to the side of a corner dot in the

3 × 3 grid as shown in Figure 1. There are four corner dots
{1, 3, 7, 9}, one center dot 5 and four side dots {2, 4, 6, 8}.
A corner dot can be connected directly to any of the 5 non-
corner dots (Figure 1b), center dot can be connected to any
of the remaining 8 dots (Figure 1d) while a side dot can be
connected directly to any of the 7 dots (Figure 1e). Due to
overlap rule, a side dot can be connected to the remaining
eighth dot if dot 5 is already connected (Figure 1f).

Table I shows the theoretical distribution of overlaps in
3× 3 patterns. If overlaps are never used in the patterns then
the search space diminishes to just 139,880. The maximum
number of overlaps that can occur in a pattern is 5, and it
is observed for instance in patterns that begin with the center
dot, followed by all side dots followed by all corner dots. One
such pattern (528463971) is shown in Figure 2c.

#Overlaps Count Percentage

0 139,880 35.95%
1 159,480 40.98%
2 69,896 17.96%
3 16,912 4.35%
4 2,688 0.69%
5 256 0.07%

#Patterns 389,112 100%

TABLE I: Distribution of overlaps in patterns.

A. Contribution

In this work, we alter the existing 3 × 3 interface with a
visual indicator mechanism to make users aware of different
connectivity rules. Specifically, as users draw their pattern, the
new 3 × 3 interface highlights the next set of unconnected
dots that can be reached from the currently connected dot,
thus making users aware of different connection options at
each step during pattern creation as well as during recall. We
refer to this highlighting interface as TinPal. We note that the
proposed interface does not force or persuade users to connect
any particular dot, instead it simply informs users about the
set of choices available for consideration from the currently
connected dot.

The working of TinPal is illustrated in Figure 3. The figure
shows a step-by-step snapshot of TinPal while the pattern is
being drawn by the user.

1) Suppose that the user starts her pattern with dot
3. From dot 3, the user can visit any non-corner
dot {2, 4, 5, 6, 8} (direct rule). However, the user
cannot visit dot 1 as dot 2 is still unconnected or
dot 7 as dot 5 is unconnected or dot 9 as dot 6 is
unconnected (overlap rule). Hence, only non-corner
dots {2, 4, 5, 6, 8} are highlighted by TinPal as shown
in Figure 3a.

2) Next, the user visits dot 8. From dot 8, the user can
visit any dot except dot 2. This is because dot 5
is still not connected (overlap rule). Therefore, all
unconnected dots {1, 4, 5, 6, 7, 9} except dot 2 are
highlighted as shown in Figure 3b.

3) Subsequently, the user connects dot 5. From dot 5, the
user can visit any unconnected dot {1, 2, 4, 6, 7, 9} as
highlighted in Figure 3c.
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(a) Start dot 3 (b) Current dot 8 (c) Current dot 5 (d) Current dot 1 (e) Current dot 9

(f) Current dot 6 (g) Current dot 4 (h) Current dot 2 (i) Current dot 7

Fig. 3: A step-by-step illustration of pattern creation on TinPal. This interface highlights the next set of unconnected dots that can be visited
from the currently connected dot. The connectivity rules are conveyed to users in real-time while the pattern is being drawn. The pattern
created in the above example is 385196427.

4) The user chooses dot 1. From there, the user can
visit any unconnected non-corner dot {2, 4, 6} (direct
rule). Since dot 5 is already connected, the user can
also visit dot 9 (overlap rule). However, the user
cannot visit dot 7 as dot 4 is not yet connected.
Hence, the set {2, 4, 6, 9} is highlighted by TinPal
as depicted in Figure 3d.

5) Next choice is dot 9. From there, the user can
visit any unconnected non-corner dot {2, 4, 6} (direct
rule). Further, since dot 8 is already connected, the
user can now visit dot 7 (overlap rule). Hence, the set
{2, 4, 6, 7} is highlighted as indicated in Figure 3e.

6) Next, the user visits dot 6. From dot 6, in addition to
unconnected dots 2 and 7 (direct rule), the user can
also visit dot 4 since dot 5 is already connected (over-
lap rule). Therefore, the set {2, 4, 7} is highlighted in
Figure 3f.

7) Next choice is dot 4. From there, the user can go to
either dot 2 or dot 7 (direct rule) as highlighted in
Figure 3g.

8) The user connects dot 2. Now, the only choice
available is dot 7 (direct rule) which is highlighted
in Figure 3h.

9) Finally, the user connects dot 7 and the pattern
385196427 is recorded as shown in Figure 3i.

The contributions of this paper are as follows:

• We enhance the existing 3× 3 interface with a visual
indicator mechanism to help users select more diverse
patterns. Specifically, the new interface (referred to
as TinPal) highlights the set of reachable dots from
the currently connected dot, thus making connectivity
rules more salient to users. The highlighting mech-
anism works in real-time while the pattern is being
drawn.

• We also give an algorithm that takes the currently
connected dot as an input and outputs the next set of
unconnected dots that can be visited from the current
dot.

• We evaluate the impact of our visual indicator mecha-
nism with a comparative user study involving 99 par-
ticipants. We found that the participants who used Tin-
Pal (experimental group), created patterns using sig-
nificantly large number of dots and complex features
such overlaps, knight moves and direction changes,
than those who used the existing 3 × 3 interface
(control group).

• We also estimate the guessing resistance of patterns
created in the control group and the experimental
group using a Markov model based guessing algo-
rithm. Within first 20 attempts, the algorithm cracked
12% patterns in the control group, but none (0%)
in the experimental group. We also had access to
69,797 3× 3 patterns (ASIACCS’17 dataset) reported
recently in [24]. Within 20 attempts, the algorithm
(trained on 69,797 patterns) cracked 12.24% patterns
in the control group, but only 4% patterns in the
experimental group.

The organization of this paper is as follows. First, we
provide a brief overview of graphical passwords and review
the work related to the security of the pattern lock scheme.
Subsequently, we describe the design choices we made along
with the working mechanics of the proposed interface. Next,
we describe the user study and present both security and
usability results. Finally, we discuss the future work.

II. RELATED WORK

Graphical passwords are considered as promising alterna-
tive to textual passwords since many research studies [19],
[17], [27] suggest that graphical information is easier to
remember than textual information. Based on the difficulty
of retrieving graphical information from the visual memory,
graphical schemes are broadly divided into three categories
[11]: recognition-based, cued recall-based and recall-based.

A typical example of a recognition-based scheme is Pass-
Faces [12], where the user selects an image face from a set
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of 9 image faces and correctly recognizes it among decoy
images during login. To attain sufficient security, there are
multiple iterations, with each iteration employing a different
set of 9 images. An example of cued recall-based scheme is
Pass-points [26] in which the user selects a sequence of points
on a system-assigned image. During login, this image acts as a
memory cue which helps the user to recall the selected points
in the correct order. An example of recall-based scheme is
Pass-Go [23], in which the user draws one or more strokes on
a n× n grid. The 3× 3 pattern lock scheme is a special case
of Pass-Go, where n is set to 3 so that the grid could fit on
smartphones.

A. Android Pattern Lock

Security of the pattern lock scheme has been well studied
in the literature. In 2010, Aviv et al. [9] demonstrated that it is
possible to reconstruct the user’s entire pattern from the oily
traces left on the screen. This attack is popularly known as
smudge attack. Later in 2013, Andriotis et al. [7] showed that
it is possible to recover the entire pattern even from the partial
traces by exploiting users’ biased choices. They surveyed 144
participants and found that more than half of them started
their pattern from the upper-left dot. Further analysis revealed
that 18.75% of the participants used the path 1 → 2 → 3 in
their pattern. These observations along with the partial physical
traces reduced the search space drastically.

In 2013, Uellenbeck et al. [25] found that users’ pattern
choices are biased and prone to guessing attacks. They col-
lected approximately 2900 patterns from 584 participants on 5
different layouts. Their analysis revealed that most users create
3×3 patterns with horizontal (e.g., 1→ 2) and vertical strokes
(e.g., 1→ 4) which reduces the security of 3×3 patterns to just
3-digit random PINs. They also found that patterns created on
the circular interface (8 dots on the circumference and 1 dot in
the center) were more secure than 3×3 patterns. Similar results
were reported in a recent study by Tupsamudre et al. [24]. They
proposed a different circular interface, called Pass-O, with all
9 dots on the circumference and evaluated it with a large-
scale study (21,053 users, 123,190 patterns). However, both
[25], [24] focused on security and lacked rigorous usability
evaluation. In 2016, Aviv et al. [8] studied the security of
4 × 4 patterns and found that the majority of them are just
extended versions of 3× 3 patterns.

Most graphical password schemes are susceptible to
shoulder-surfing attacks [11]. In 2015, Zezschwitz et al. [28]
performed a systematic evaluation of the shoulder-surfing
susceptibility of the pattern lock scheme. They found that line
visibility, pattern length, number of knight moves, number of
overlaps and number of intersections (refer to section V-A
for definitions) play an important role in thwarting shoulder-
surfing attacks. Recently, Davin et al. showed that different
viewing angles, hand positions and phone sizes can also affect
the efficacy of shoulder-surfing attacks. Various strength meters
have been proposed [6], [22], [21] to encourage users to create
visually complex patterns. These meters nudge users to draw
longer patterns with overlaps, knight moves, direction changes
and intersections.

Other related works are by Siadati et al. [20] and Cho
et al. [13]. Siadati et al. proposed a persuasive interface that

suggests a random starting point to the user while Cho et al.
proposed three SysPal policies that mandate users to include
1 to 3 random dots at any position in their pattern. However,
we note that mandating the use of random dots in the pattern
does not ensure that the resulting patterns will exhibit secure
characteristics such as knight moves and overlaps simply
because users may not be aware about the feasibility of such
connections. In fact, Cho et al. found that in all three SysPal
policies, the most frequently used segments were 1 → 2 and
2→ 3, and i→ i+1 was more frequently used than i+1→ i
for all i = 1, 2, 4, 5, 7 and 8, implying that most patterns were
drawn from left to right.

On the other hand, the highlighting interface TinPal pro-
posed in this paper does not mandate users to connect any
specific dot, it just informs them about the set of reachable
dots in each step during pattern creation as well as during
recall. Our study results show that patterns drawn on TinPal
used significantly longer strokes and large number of knight
moves, overlaps and direction changes as compared to those
drawn on the existing interface. Moreover, the proportion of
SysPal patterns that were cracked in 20 attempts are: 9.97%
(1-dot), 9.36% (2-dot) and 14.11% (3-dot). These numbers
suggest (also stated in [13]) that mandating too many points
could potentially reduce the overall password space. Further,
for patterns created using TinPal, the proportion of patterns
cracked in 20 attempts is 0% (and 4% using ASIACCS’17
dataset [24]). To the best of our knowledge, our study is the
first attempt that gauges the impact of informing users about
the next valid points in the 3× 3 pattern lock scheme.

III. INTERFACE DESIGN AND MECHANICS

We employ two design principles, namely, visibility and
consistency [18], to enhance the existing 3 × 3 interface.
According to the visibility principle, the system should have
proper mechanisms to convey to users what actions are possi-
ble. The visual indicator mechanism in TinPal makes the set
of available choices visible to users. Specifically, it highlights
the next set of unconnected dots that can be visited from the
currently connected dot to help users choose diverse 3 × 3
patterns. This highlighting of dots happens in real-time while
the pattern is being drawn.

The consistency principle on the other hand makes the
interface intuitive to use. The highlighting of dots in TinPal
happens not only during pattern creation, but also during
recall. This eliminates the confusion since the behaviour of
the interface is consistent during creation and recall. Further,
the highlighting of dots could also serve as cue when the user
is trying to retrieve the pattern from her memory.

TinPal also retains the feedback mechanism of the existing
interface, thereby enforcing the first three requirements for
creating patterns [25]. For instance, if the user connects less
than 4 dots, it displays the feedback message, “Connect at least
4 dots. Try again.” and it enforces users to connect two dots
using straight lines only.

A. Mechanics

Now, we present an algorithm that takes the currently
connected dot d as an input and outputs the next set Sd of
unconnected dots that can be reached from the current dot d.
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This algorithm is invoked whenever the user connects a new
dot on TinPal. The set of dots returned by this algorithm are
highlighted on the interface. To simplify the algorithm, we
define a neighbourhood relation on the 3×3 grid. We say that
a dot d1 is a neighbour of a dot d2 on the 3×3 grid if it lies in
any of the eight directions (north, north-east, east, south-east,
south, south-west, west and north-west) from dot d2. Figure 4
depicts the neighbourhood of dots 1, 2 and 5 in all possible
directions. Dot 1 being a corner dot has 3 neighbours, i.e.,
dots 2 (east), 4 (south) and 5 (south-east). Dot 2 being a side
dot has 5 neighbours, i.e., dots 1, 3, 4, 5, and 6, whereas the
center dot 5 has all the other dots as its neighbours.

(a) Neighbours of 1 (b) Neighbours of 2 (c) Neighbours of 5

Fig. 4: Neighbours of dot 1 (corner), dot 2 (side) and dot 5 (center).

Algorithm 1 starts by adding all the unconnected dots to
the set Sd. Then it eliminates those dots from the set Sd that
are not reachable from the current dot d. For elimination, the
algorithm employs Table II which describes the neighbours of
all 9 dots on the 3×3 grid. A row in the table represents a dot
and a column represents a direction. If a dot d does not have
any neighbour in direction j, then the corresponding entry in
the neighbourhood table is marked with symbol ⊥ (indicating
empty). To eliminate the unreachable dots from the set Sd, the
algorithm scans the entire dth row, i.e., all 8 neighbours of dot
d in the neighbourhood table. If the entry (in the jth direction)
is marked with ⊥ then the algorithm does not take any action.
Otherwise, the algorithm checks if the neighbouring dot e (in
the jth direction) is already connected. If it is not, then the
algorithm eliminates the neighbour of the neighbouring dot e
in the jth direction from the set Sd. We illustrate the working
of this elimination algorithm through an example.

Suppose that the user starts her pattern by connecting
dot 1. Subsequently, the elimination algorithm is invoked to
determine the set Sd of unconnected dots that can be reached
from the current dot 1. The algorithm begins by adding
all unconnected dots {2, 3, 4, 5, 6, 7, 8, 9} to the set Sd. The
algorithm then scans the first row of the neighbourhood table
to identify and remove the unreachable dots from dot 1 in the
set Sd. As its neighbour in the east dot 2 is still unconnected,
the algorithm removes dot 3 (which lies further to the east
of dot 2) from the set Sd. This elimination occurs due to the
overlap rule which says that dot 1 cannot be directly connected
to dot 3 as dot 2 is still unconnected. Similarly, as the south
neighbour dot 4 is yet to be connected, the algorithm removes
dot 7 (which lies further to the south of dot 4) from the set
Sd. Also, as the south-east neighbour dot 5 is unconnected, the
algorithm removes dot 9 (which lies further to the south-east
of dot 5) from the set Sd. Therefore, the set Sd = {2, 4, 5, 6, 8}
is returned for the highlighting purpose.

Dot N ↑ NE ↗ E→ SE ↘ S ↓ SW ↙ W ← NW ↖

1 ⊥ ⊥ 2 5 4 ⊥ ⊥ ⊥
2 ⊥ ⊥ 3 6 5 4 1 ⊥
3 ⊥ ⊥ ⊥ ⊥ 6 5 2 ⊥
4 1 2 5 8 7 ⊥ ⊥ ⊥
5 2 3 6 9 8 7 4 1
6 3 ⊥ ⊥ ⊥ 9 8 5 2
7 4 5 8 ⊥ ⊥ ⊥ ⊥ ⊥
8 5 6 9 ⊥ ⊥ ⊥ 7 4
9 6 ⊥ ⊥ ⊥ ⊥ ⊥ 8 5

TABLE II: Neighbourhood table for the 3× 3 grid.

Algorithm 1 Elimination Algorithm

1: procedure Elimination Algorithm
2: Input: Current dot d
3: Output: Set Sd of unconnected dots that can be visited

from the current dot d
4: Sd ← all unconnected dots
5: m← number of columns in the neighbourhood table
6: j ← 1
7: while j ≤ m do
8: e← table[d][j]
9: if e 6=⊥ && !isConnected(e) then

10: Sd ← Sd \ {table[e][j]}
11: end if
12: j ← j + 1
13: end while
14: end procedure

IV. USER STUDY

We evaluate the impact of our visual indicator mechanism
on users’ pattern choices with a comparative user study. The
study was conducted in lab during August 2017. Participants
were recruited using internal mailing lists within our organiza-
tion. A total of 99 users responded to our e-mail and completed
the study. Participants were randomly split into two groups: a
control group containing 49 participants and the experimental
group containing 50 participants.

• Control Group. Participants in this group created
their pattern on the existing 3× 3 interface.

• Experimental Group. Participants in this group cre-
ated their pattern on TinPal which highlights the next
set of available dots that can be visited from the
currently connected dot.

A recent study [10] found statistically significant dif-
ferences between patterns collected on the mobile device
of participants and patterns collected using other collection
methods. Therefore, we opted for pattern collection on the
participant’s own mobile device. To make the study available
across all mobile devices, we created an HTML/Javascript web
application using Java J2EE platform. Thus, participants could
easily access the study using any standard web-browser on
their mobile devices without having to install any additional
software. We tried to simulate the look and feel of Android
Lock Pattern as closely as possible. Participants were given a
pen and a chocolate worth $2 for completing the study. There
is no IRB in our organization for approving studies involving
human subjects. However, we took all the necessary steps in
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order to be compliant with privacy regulations. The data was
collected anonymously and used for research purposes only.

A. Participants

The demographics of our participants are summarized
in Table III. Majority of participants were between 20 and
30 years of age, and right handed. The proportion of male
participants in the experiment was slightly higher than that
of the female participants. Also the proportion of participants
with a background in CS/IT/security exceeded those with
no such background. Further, all participants had at least an
undergraduate degree and belonged to the same nationality.
We found no statistically significant difference in gender,
handedness, age or background of participants across two
groups (Fischer’s Exact Test, p > 0.01).

During experiment, we also asked participants questions
related to the mobile device they own and the screen lock they
use (if any) to protect it. These device and lock statistics are
also presented in Table III. A large fraction of participants used
Android phones. Further, majority of them were familiar with
the Android pattern lock scheme. We found no statistically
significant difference in the mobile OS experience and pattern
lock familiarity across two groups (Fischer’s Exact Test, p >
0.01).

Control Experimental

Gender
Male 51.02% 56.00%
Female 48.98% 44.00%

Handedness
Right 95.92% 98.00%
Left 4.08% 2.00%

Age Group
20-25 67.35% 80.00%
26-30 26.53% 16.00%
31-35 6.12% 4.00%

Background
CS/IT/Security 59.18% 54.00%
Others 40.82% 46.00%

Mobile OS
Android 95.92% 92.00%
iOS 2.04% 6.00%
Windows 2.04% 2.00%

Screen-lock
Android Pattern 59.18% 58.00%
PIN 30.61% 38.00%
Password 24.29% 26.00%
Fingerprint 38.78% 42.00%
Slide-to-lock 24.29% 26.00%
None 10.20% 4.00%

#Participants 49 50

TABLE III: Demographics of participants in control and experimental
groups.

B. Procedure

The structure of our study is similar to the one described in
[15]. The study was conducted in lab in 6 stages: 1) Informa-
tion, 2) Brief introduction to Android Lock Patterns, 3) Pattern
creation, 4) Distraction task, 5) Questions on demographics,
device and screen-lock, and 6) Pattern recall. The details of
each stage are given below.

1) Information. Participants were requested to open the
study link on their mobile device. On visiting the link,

they were shown the information page (Figure 5a)
which contained a brief information about the study,
its purpose and the data usage policy. This page was
common for both the groups.

2) Introduction to Pattern Lock. After agreeing to partic-
ipate in the study, participants were shown a sample
3× 3 grid along with the pattern creation rules. The
control group participants were informed about the
four pattern creation rules [25] while the experimental
group participants were informed about the highlight-
ing feature as depicted in Figure 5b. To ensure that
participants in the control group become familiar with
the existing 3 × 3 interface and participants in the
experimental group become familiar with TinPal, we
also had a training page where the participants could
explore the assigned interface by creating as many
patterns as they like.

3) Pattern Creation. After completing the training, par-
ticipants were given the smartphone scenario [15],
in which they were asked to create a new pattern to
protect their mobile device. Participants in the control
group created pattern on the existing 3× 3 interface
while participants in the experimental group created
pattern on our highlighting interface, TinPal. After
submitting a valid pattern, participants were asked
to re-confirm their pattern. If the confirmation failed,
participants could try creating the pattern again.

4) Distraction Task. After creating the pattern, partici-
pants in both groups were asked to solve mental ro-
tation puzzles. Specifically, participants were shown
a target object at the top and they had to identify
which one of the bottom two objects matches the
target as illustrated in Figure 5d. All participants had
to attempt three such puzzles. The purpose of these
puzzles was to clear their visual working memory.
The dataset required for building the puzzles was
used from [4].

5) Questions. To further prolong the recall stage, we
asked participants few questions pertaining to demo-
graphics, their mobile device and the screen-lock they
use (if any).

6) Pattern Recall. Finally, participants were asked to
recall their pattern within five attempts. Participants
in the control group used the existing pattern lock
interface while participants in the experimental group
used TinPal.

C. Limitations

The sample used in our comparative study is younger and
more tech-savvy, and therefore, may have better memory than
average which could influence the results. Further, as the study
was conducted in lab, the sample is small (99 participants)
and with a large sample we could observe further patterns.
However, the objective of our study was to determine whether
informing users about connectivity rules through the highlight-
ing mechanism had any impact on their pattern choices which
we found to be statistically significant with this small sample.
We note that our sample size (99 participants) is larger than
that of Cho et al. lab study (46 participants) [13].

Further, it is not easy to demonstrate if patterns created in
the study are realistic. Fahl et al. [14] attempted to address the
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(a) Information Screen (b) Introduction to Pattern Lock (TinPal) (c) Create Pattern (d) Solve Puzzle

Fig. 5: Selected screens of the user study.

questions related to ecological validity in password studies and
found that passwords created by participants asked to role-play
a scenario resemble their real passwords. They also found that
passwords created in the lab study were more representative
of actual passwords than those in the online study and priming
subjects did not make any difference. Therefore, we conducted
our study in lab and asked participants to create a pattern for
the smartphone scenario.

V. RESULTS

To evaluate the impact of TinPal on users’ pattern choices,
we compare certain characteristics of patterns created in the
control group (existing interface) and the experimental group
(TinPal). Specifically, we look at pattern characteristics such
as pattern length, stroke length, start points, end points,
direction changes, knight moves, overlaps, intersections and
trigrams. These characteristics are considered to be effective
in preventing guessing attacks [7], [25], [6], [8], [24] and
shoulder-surfing attacks [22], [21], [28]. We also measure
the guessability of patterns created in both groups using an
attack technique based on n-gram Markov model [25], [8],
[20], [24], [13]. Finally, we investigate the usability aspects
like memorability (recall attempts) and efficiency (creation and
recall time) of the two groups.

A. Pattern Characteristics

Table IV compares the characteristics of patterns created in
two groups. The mean, the median and the standard deviation
of each pattern characteristic along with the result of statistical
analysis is shown in the table. As the data is not normally dis-
tributed (Shapiro-Wilk test rejects the null hypothesis that data
is normal with a p < 0.01), we use Wilcoxon-Mann-Whitney
test [16] to determine whether pattern characteristics on the
two interfaces differed significantly. We use a significance level
of α = 0.01. Since we perform statistical tests on six different
pattern features (Table IV) with α = 0.01, we apply Bonferroni
correction and alter its value to 0.01/6 = 0.0016 and claim
statistical significance if p < 0.0016.

Pattern Length. It is the most basic feature and represents
the number of dots connected in the pattern [25], [6], [22],

Characteristic Control Experimental p-value significant

Pattern Length
Mean 6.08 7.04 0.006870 no
Standard deviation 1.90 1.60
Median 5.00 7.00

Stroke Length
Mean 6.05 8.39 0.0000074 yes
Standard deviation 2.63 2.69
Median 5.41 8.27

Knight Moves
Mean 0.41 1.36 0.0000590 yes
Standard deviation 0.94 0.92
Median 0.00 1.00

Overlaps
Mean 0.12 0.72 0.000585 yes
Standard deviation 0.33 1.02
Median 0.00 0.00

Direction Changes
Mean 1.57 2.9 0.000408 yes
Standard deviation 1.40 1.91
Median 2.00 3.00

Intersections
Mean 0.43 0.64 0.041358 no
Standard deviation 1.99 1.25
Median 0.00 0.00

#Trigrams 105 159
#Patterns 49 50

TABLE IV: Comparison of pattern characteristics across two groups.

[21], [8], [28], [24]. Figure 6a depicts the distributions of
pattern length in both groups. The number of control group
participants who used more than six dots to connect their
pattern is only 40.82% while the number of such experimental
group participants is 64%. However, there does not appear to
be a very significant difference in the number of dots used
for connecting patterns across both groups (p = 0.006870 >
0.0016).

Stroke Length. The line segments used for creating 3× 3
patterns are not all similar. For instance, the line segments
1 → 2, 1 → 3, 1 → 5, 1 → 6 and 1 → 9 all have different
physical lengths. To capture this distance notion, we use the
concept of stroke length [8], [24] which is defined as the sum
of Euclidean distances of all line segments within the pattern.
In order to compute the Euclidean distance of a line segment,
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(a) Pattern length (b) Knight moves (c) Overlaps (d) Direction changes

Fig. 6: Distribution of length, knight moves, overlaps and direction changes across two groups.

we label the upper-left dot in the 3 × 3 grid as (0,0) and the
lower-right dot as (2,2). Thus, the Euclidean distance of the
segment 1→ 2 is 1, that of 1→ 5 is

√
2, that of 1→ 3 is 2,

that of 1→ 6 is
√
5 and that of 1→ 9 is 2

√
2.

Stroke length of a pattern is considered as an important
feature in countering shoulder-surfing attacks [22] as well
as guessing attacks [8], [24]. The stroke length of patterns
in the experimental group (8.39) is significantly higher than
the stroke length of patterns in the control group (6.05).
Normalizing the stroke length with respect to the pattern
length reveals the mean length of the line segment used for
creating patterns in both groups. The normalized stroke length
of patterns1 in the control group is 6.05

6.08 ≈ 1 while in the
experimental group it is 8.39

7.04 ≈ 1.19 (19% increase).

Knight Moves. The concept of a knight move is similar
to the one defined in the game of chess. A knight move
occurs when a dot is connected to another dot, that is two
units away in the horizontal (vertical) direction and one unit
away in the vertical (horizontal) direction. In other words, line
segments with the Euclidean distance of

√
5 are referred to

as knight moves. For instance, the segment 3 → 4 in the
pattern 3457869 is a knight move (Figure 7a). The number
of knight moves is considered to be an important feature
in thwarting both shoulder-surfing attacks [28] and guessing
attacks [6]. The distribution of knight moves in patterns across
both groups is shown in Figure 6b. Only 22.45% of the patterns
in the control group had at least one knight move, while the
proportion of such patterns in the experimental group is 58%.
Overall we found that patterns on TinPal were created using
significantly more knight moves than those on the existing
interface (p = 0.0000590).

(a) Pattern with knight move (b) With overlap move (c) With intersections

Fig. 7: Patterns with knight move, overlap move and intersections.

Overlap. A connection between two dots in a pattern
is referred to as an overlap, if the dot between them is

1We used the ratio of means since it is always less than or equal to the
means of ratio by Jensens’ inequality.

already connected. In other words, the line segments with
the Euclidean distance of either 2 or 2

√
2 are referred to as

overlaps. For instance, the line segment 9 → 1 in the pattern
5789123 constitutes an overlap (Figure 7b). Its length is 2

√
2.

Another instance of an overlap is the connection 7 → 9 in
the pattern 8792615. Its length is 2. The number of overlap
moves is considered to be an important feature in resisting
both shoulder-surfing [28], [22], [21] and guessing attacks [6].
The distribution of overlaps in patterns across both groups is
shown in Figure 6c. Only 12.24% of the participants in the
control group created their pattern with at least one overlap
whereas the number of such participants in the experimental
group is 40%. Overall results indicate that participants in the
experimental group created patterns with significantly more
overlaps than participants in the control group (p = 0.000585).

Direction Changes. A direction change occurs when two
consecutive line segments in a given pattern have different
Euclidean distances [24]. For instance, two consecutive line
segments 3 → 4 and 4 → 5 in the pattern 3457869 consti-
tute a direction change since these segments have different
Euclidean distances (

√
5 and 1 respectively). Simple patterns

such as 321456987 (‘S’ shape) composed of unit distance
line segments do not comprise any direction change [24]. The
distribution of direction changes used while creating patterns
across two groups is shown in Figure 6d. Only 20.40% of
the participants in the control group used more than two
direction changes, while the proportion of such patterns in
the experimental group is 52%. Overall results show that
participants in the experimental group changed direction more
often in their pattern than participants in the control group
(p = 0.000408).

Intersections. An intersection occurs when two non-
consecutive line segments in a pattern cross each other. For
instance, the line segments 6 → 8 and 9 → 5 in the
pattern 6895124 intersect each other (Figure 7c). Here another
intersection occurs between the line segments 5 → 1 and
2→ 4. The number of intersections in a pattern is considered
as an important feature in countering shoulder-surfing attacks
[22], [21], [28]. After analysing the data sets, we found that
the highlighting mechanism had no effect on the number of
intersections in the patterns across two groups (p > 0.0016).

Start and End Points. As reported in the previous studies
[7], [25], [6], [8], [24], the upper-left dot is the most popular
starting choice and the lower-right dot is the most popular
ending choice for creating patterns in both groups (Figure 8).
About 31% of the participants in the control group and 24% in
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(a) Start Point (Control) (b) Start Point (Experimental) (c) End Point (Control) (d) End Point (Experimental)

Fig. 8: Start and end point distributions across two groups (percentages are rounded to the nearest integer).

8 7 7 6 6 6 5 5 4 4 4 3
Top 12 trigrams and their frequencies in the control group.

6 5 5 5 5 4 4 3 3 3 3 3
Top 12 trigrams and their frequencies in the experimental group.

Fig. 9: Top 12 trigrams in the datasets along with their frequencies.

the experimental group began their patterns from the upper-left
dot whereas about 20% of the participants in the control group
and 24% in the experimental group ended their patterns on the
lower-right dot. We estimate the uncertainty in the start and
end point choices of both groups using the Entropy measure:

Entropy H =

9∑
i=1

pi · log2(1/pi) (1)

where pi is the probability of choosing a dot i as a start (or end)
point. The uncertainty in the start point choices of the control
group and experimental group is similar, 2.82 bits and 2.93 bits
respectively. The uncertainty in the end point choices of the
control group and experimental group is also similar, 2.96 bits
and 2.94 bits respectively. Thus, the highlighting mechanism
did not seem to have any effect on the start and end point
choices of the participants in the experimental group.

Trigrams. Any continuous sequence of 3 dots in a pattern
constitutes a trigram, e.g., the trigrams in the pattern 34578 are
345, 457 and 578. Patterns in the control group were composed
using total 200 (105 distinct) trigrams whereas patterns in
the experimental group were composed using total 252 (159
distinct) trigrams. Top 12 trigrams for each group along with
their frequencies are shown in Figure 9. These 12 trigrams
constitute about 1/3rd of the total trigrams in the control group
and 1/5th of the total trigrams in the experimental group. Thus,
the trigrams used for creating patterns in the experimental
group were more diverse than the control group.

B. Pattern Guessability

We measure the guessability of patterns created in the
control group (existing interface) and the experimental group
(TinPal) using Markov model based attack technique described
in [25]. Markov models exploit the fact that the subsequent
choices in a human-generated sequence are based on the
previous choices. For instance, in English language letter h
is most likely to follow letter t than letter p. In case of 3× 3
patterns, dot 2 is more likely to follow dot 1 than dot 9. The
n-gram Markov model predicts the next letter in a sequence
based on the past n− 1 choices. The probability of a l length
sequence s1s2 . . . sl is modelled as:

P (s1 . . . sl) = P (s1 . . . sn−1) ·
l∏

i=n

P (si|si−n+1 . . . si−1) (2)

In addition to training Markov model on our dataset, we
also train another Markov model on 69,797 3 × 3 patterns
collected by Tupsamudre et al. [24] (ASIACCS’17 dataset)
and report the guessability results using both models. Since
Android enforces a policy that allows a maximum of 20 failed
attempts [13], we focus on pattern cracking results for the first
20 guesses only.

Our dataset. We need 9 · 8 = 72 values to learn 2-
grams and 9 · 8 · 7 = 504 values to learn 3-grams. Since the
control group dataset has 49 patterns and corresponding 298
datapoints that are insufficient to learn 3-gram probabilities,
we resort to 2-grams and use Laplace smoothing to account
for unseen 2-grams. We perform 10-fold cross-validation on
each pattern set, i.e., we divide each pattern set into 10
approximately equal-sized subsets, one of the subset is used as
test set and the remaining 9 subsets are combined into training
set. We estimate the probabilities of all possible patterns
(389,112) using training set, sort them in descending order
of probabilities and simulate guessing attack on the test set.
We repeat this validation 10 times where every subset is used
as a test set. We perform this entire process 10 times and
report the average results. Within first 20 attempts, the guessing
algorithm could crack 12% patterns in the control group and
none in the experimental group.

ASIACCS’17 dataset. We also had access to 69,797 3×3
patterns collected by Tupsamudre et al. [24]. Since their dataset
is huge, we train a 3-gram Markov model to estimate the
probabilities of all possible patterns (389,112), and simulate
guessing attacks on our datasets. Within first 20 attempts, the
guessing algorithm could crack 12.24% patterns in the control
group and 4% patterns in the experimental group.

C. Usability Results

Now, we present the results pertaining to usability. Specif-
ically, we compare memorability and efficiency of patterns
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created on the existing interface with those created on TinPal.
As the usability data, i.e., login attempts, pattern creation time
and pattern recall time are not normally distributed, we use
Wilcoxon-Mann-Whitney test [16] and claim the results to be
statistically significant if p < 0.01.

Memorability. We measure memorability using the follow-
ing two metrics:

• number of users who successfully recalled their pat-
tern.

• number of login attempts required to recall the pattern.

Before advancing to the pattern recall stage, participants
in both groups spent 3.72 minutes on an average solving the
distraction task (Figure 5d) and answering questions related to
demographics, their devices and screen locks. The results per-
taining to pattern recall are shown in Table V. 97.96% (48/49)
of the participants in the control group and 98% (49/50) of
the participants in the experimental group successfully recalled
their pattern within three attempts. We found no significant
difference in the login attempts of both groups (FET, p = 1).

Control Experimental

Attempt 1 35 (71.43%) 39 (78.00%)
Attempt 2 11 (22.45%) 8 (16.00%)
Attempt 3 2 (4.08%) 2 (4.00%)

Successful 48 (97.96%) 49 (98.00%)
Recall time 1.71s 2.24s

TABLE V: Login attempts of participants across two groups.

Efficiency. We measure efficiency using two metrics:

• time required to create the pattern during creation
stage.

• time required to recall the pattern during recall stage.

Before advancing to the pattern creation stage, participants
in both groups spent some time in the training stage. This stage
was exploratory and provided participants with an opportunity
to become familiar with the assigned interface. Participants
in the control group explored 1.65 patterns on an average on
the existing interface whereas participants in the experimental
group were more curious about TinPal and explored 5.6
patterns on an average. The average time required to create
a pattern in the control group is 2.10s while the time required
in the experimental group is 3.50s. We found significant differ-
ence in the creation time between two groups (p = 0.000078)
which suggests that participants in the experimental group
spent relatively longer time creating their pattern and paid
attention to the highlighted dots.

The average time required to recall a pattern in the
control group (1.71s) is also less than that required in the
experimental group (2.24s). As a consequence, there is a
significant difference in the recall time between two groups
(p = 0.00215). However, we note that the average stroke
length of patterns created in the control group (6.05) is less
than those created in the experimental group (8.39). After
normalizing the recall time with respect to the stroke length,
the recall time of patterns in the control group ( 1.716.05 ≈ 0.28s)

is similar to the recall time of patterns in the experimental
group ( 2.248.39 ≈ 0.27s).

Acceptability. We asked participants in the experimental
group an open-ended question: “Which pattern lock interface
do you prefer, the existing one that you have used before (on
your phone) or the new one that you saw in our experiment?”
Of the 29 (58%) experimental group participants who reported
using Android pattern screen-lock before (Table III), 93.10%
said that they would prefer the new one used in the experiment
while 6.90% said that they would prefer the existing one. Some
of the remarks made by participants are as follows.
‘The new interface is better because of feedback feature.’
‘The new one gives more idea about the variety of patterns we
can make.’
‘I prefer the existing interface, need simple patterns only.’

VI. DISCUSSION AND FUTURE WORK

In this work, we propose a new 3 × 3 interface, TinPal,
which informs users about different available connection op-
tions during both pattern creation and its recall. The results of
our comparative study indicate that TinPal influenced users’
pattern choices without much affecting the usability. Partici-
pants who used TinPal created patterns with longer strokes and
visually complex features such as knight moves, overlaps and
direction changes compared to those who used the existing
interface. Guessability results show that patterns created on
TinPal are more guessing-resistant than those created on the
existing interface. These results are encouraging as TinPal just
informed users about all available options and did not force or
nudge them towards a particular option.

Our data indicates that TinPal had no effect on the start
point choices of the users, and they remain biased. For ex-
ample, the upper-left dot is still the most popular choice. One
way to reduce this bias is to suggest a random starting point to
the user as done in [20]. After the user connects the suggested
point, TinPal will come into action and highlight the next set
of reachable dots from the connected dot.

SysPal policies [13] mandate users to use 1 to 3 randomly
chosen dots in their pattern. However, these policies do not
ensure that the resulting patterns will be composed using
knight moves (1→ 6) or overlaps (1→ 3) as users may not be
aware of such connection options. On the other hand, our study
results show that patterns drawn on TinPal use significantly
longer strokes and large number of knight moves, overlaps
and direction changes. SysPal policies can be combined with
TinPal so that along with mandating users to use randomly
chosen dots in their pattern they also inform users about all
possible connection options which could further strengthen the
security of the pattern lock scheme.

It would be interesting to study the combined effect of
TinPal and different pattern strength meters proposed in the
literature [6], [22], [21]. With the existing interface, users
might not be aware of all potential choices for creating their
pattern which can reduce the impact of pattern strength meters.
The combination of TinPal and a pattern strength meter could
be a very effective one. As the user draws her pattern, TinPal
will make her aware of all available choices that could be
reached from the current dot and at the same time the strength
meter will indicate which of the available choices are secure.
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