
Fixing the Fixes: Assessing the Solutions of
SAST Tools for Securing Password Storage?

Harshal Tupsamudre, Monika Sahu, Kumar Vidhani, and Sachin Lodha

TCS Research, Tata Consultancy Services, India
firstname.lastname@tcs.com, monika.sahu1@tcs.com

Abstract. Text passwords are one of the most widely used authentica-
tion mechanisms on the internet. While users are responsible for creat-
ing secure passwords, application developers are responsible for writing
code to store passwords securely. Despite continued reports of password
database breaches, recent research studies reveal that developers con-
tinue to employ insecure password storage practices and have several
misconceptions regarding secure password storage. Therefore, it is im-
portant to detect security issues relating to password storage and fix
them in a timely manner before the application is deployed.
In this paper, we survey several open-source (SpotBugs, SonarQube,
CryptoGuard, CogniCrypt) Static Application Security Testing (SAST)
tools to understand their detection capabilities with respect to password
storage vulnerabilities and determine if the remediation fixes suggested
by these tools are consistent with the OWASP or NIST recommended
password storage guidelines. We found that none of the surveyed tools
covers all potential vulnerabilities related to password storage. Further,
we found that solutions suggested by the tools are either imprecise or
they are not in accordance with the latest password storage guidelines.
We conduct a study with 8 developers where each of them attempted
to replace insecure SHA-1 based password storage implementation with
PBKDF2 solution recommended by the surveyed tools. The study results
show that, in the absence of specific examples, developers choose insecure
values for PBKDF2 parameters (salt, iteration count, key length). Thus,
although the use of PBKDF2 is in adherence with the tool requirements,
the resulting password storage code may not be secure in practice.

Keywords: Secure Password Storage · Security Testing Tools.

1 Introduction

Text based passwords are the most common way of authenticating users on
the internet. Plenty of research studies have been conducted to investigate the

? Harshal Tupsamudre, Monika Sahu, Kumar Vidhani, Sachin Lodha, Fixing the Fixes:
Assessing the Solutions of SAST Tools for Securing Password Storage, Proceedings
of AsiaUSEC’20, Financial Cryptography and Data Security 2019 (FC). February
14, 2020 Kota Kinabalu, Sabah, Malaysia Springer, 2020

2 H.Tupsamudre et al.

password creation and password management strategies (storage, reuse etc.) of
end-users [29][22][39][43][33]. Recently, some efforts have been made to under-
stand the steps taken by developers to protect users’ passwords on the server
[18][31][32][30]. The use of a weak password could jeopardize the security of the
user, but a weaker server-side password implementation could put the security
of all application users at risk (including the ones who have put great efforts to
create a stronger password). In two recent studies, one involving GitHub devel-
opers [18] and the other involving freelance developers [30], researchers found
that many developers do not store passwords securely unless prompted to do so.
Further, most of the developers who attempt to store passwords securely, use
either insecure methods (e.g., base64 encoding, encryption or hashing without
using a proper salt) or outdated methods (e.g., MD5 or SHA-1). These results
are not surprising, since various password database breaches [12] reveal that
even developers from reputed companies are guilty of adopting insecure pass-
word storage practices. For instance, a data breach at LinkedIn in 2012 revealed
that user passwords were stored using insecure SHA-1 hash function and with-
out salt [27]. A data breach at Adobe in 2013 revealed that user passwords were
encrypted instead of hashed [16]. These insecure coding practices by developers
are often attributed to usability issues within existing cryptography APIs (e.g.,
poor documentation and insufficient code examples) [26][17][45], and to their
lack of expertise in the security related concepts and technologies [31][32][30].

Several guidelines are available on how to store users’ passwords securely.
OWASP recommends the use of bcrypt hash function, a unique 16 character long
random salt for each password and a common 32 character long random pepper
for all passwords [11]. NIST recommends PBKDF2 for password hashing to be
used with HMAC-SHA-256 and a work factor of at least 10,000 iterations [25].
Salting provides protection against an attacker pre-computing hashes using rain-
bow tables. However, for salting to work properly, it should be generated using
cryptographically secure pseudo-random number generator (PRNG) [11]. Java
provides two PRNGs java.util.Random and java.security.SecureRandom, of
which the latter is cryptographically secure [4]. Encryption is highly discouraged
since an attacker who gains access to the decryption key can recover plaintext
passwords easily. Additionally, passwords protected with simple hash algorithms
such as MD5 and SHA-1 are vulnerable to GPU-based cracking [38].

Security issues related to password storage are so common that they are as-
signed unique IDs and placed in Common Weakness Enumeration (CWE) which
is a community-developed formal list of software weaknesses [3]. This list is
intended to serve as a common language for describing software security weak-
nesses and is referenced by software security tools targeting these vulnerabilities.
Further, some of these issues appear consistently in OWASP top 10 critical web
application security risks [10]. The description of vulnerabilities pertaining to in-
secure password storage along with CWE-ID numbers and examples are shown
in Table 1. The first part of the table enumerates issues specific to hashing and
the second part enumerates issues specific to salting. For ease of reference, we
also associate a mnemonic with each CWE-ID.

Title Suppressed Due to Excessive Length 3

CWE Description Example Mnemonic
CWE-327 Use of a Broken or Risky Cryptographic Algorithm MD5, SHA-1 Weak Hash
CWE-256 Unprotected Storage of Credentials Plaintext Plaintext
CWE-257 Storing Passwords in a Recoverable Format AES Encryption Encryption
CWE-261 Weak Cryptography for Passwords Base64 encoding Base64
CWE-916 Use of Password Hash with Insufficient Computational Effort 1000 PBKDF2 iterations Fewer Iterations
CWE-759 Use of a One-Way Hash without a Salt No Salt No Salt
CWE-760 Use of a One-Way Hash with a Predictable Salt Salt based on username Predictable Salt
CWE-330 Use of Insufficiently Random Values java.util.Random Insufficient Randomness
CWE-338 Use of Cryptographically Weak PRNG java.util.Random Weak PRNG

Table 1. Vulnerabilities related to password storage.

If password storage vulnerabilities are expected in the application source
code, then it is important to detect and fix them in a timely manner, before
the application is deployed. Several open-source and commercial source-code
analysis tools are available that analyze applications for security vulnerabilities.
Previous research mostly focused on understanding the insecure coding practices
of developers [18][31][32][30] and the usability of cryptography APIs [17][45].
However, it is also important to understand the detection capabilities of the
existing security testing tools and to check whether they assist developers in
eliminating the detected vulnerabilities.

In this paper, we survey four Java source code analysis tools, SpotBugs [13],
SonarQube [15], Cryptoguard [5] and CogniCrypt [6], and identify their capabil-
ities in detecting security issues pertaining to password storage. We focus only
on vulnerabilities shown in Table 1. Of these four tools, the first two tools are
recommended by OWASP and the latter two tools are developed by security
researchers [34][28]. A good testing tool not only detects and reports vulnerabil-
ities, but also suggests remediation fixes wherever applicable. Therefore, we also
analyze the recommended solutions provided by the surveyed tools and deter-
mine if they are consistent with the OWASP (or NIST) recommended password
storage guidelines.

– We found that none of the surveyed tools covers all vulnerabilities related to
password storage (Table 1).

– Most of the tools detect the use of weak PRNG java.util.Random and sug-
gest to replace it with OWASP recommended cryptographically secure PRNG
java.security.SecureRandom [4].

– All tools detect the use of weak hash functions MD5 and SHA-1 (CWE-327).
However, we found multiple problems with the suggested solutions. CogniCrypt
recommends the use of fast hash function SHA-256 whereas CryptoGuard does
not recommend any solution at all.

– SpotBugs and SonarQube implement NIST recommended PBKDF2 for password
hashing using HMAC-SHA-X, where X is 256 or 512, and PBEKeySpec API [2].
Both solutions use a PBEKeySpec constructor that requires user-supplied pass-
word along with three parameters, namely salt, iterationCount and keyLength.
SpotBugs does not specify a value for salt and uses 4096 iterations which are
not enough as per the latest NIST guidelines [25]. Whereas SonarQube does not
specify values for any of the three parameters.

– We also conduct a usability study with 8 developers to further assess the rec-
ommended PBKDF2 solution of SonarQube. The study results show that since

4 H.Tupsamudre et al.

the parameters of PBEKeySpec constructor are not specified in the solution, 6
developers chose weak values for at least one parameter.

The organization of this paper is as follows. First, we describe work related
to passwords. Then, we describe a sample code containing different password
storage vulnerabilities. Subsequently, we describe each tool briefly and evaluate
it by running on a sample code. We also assess the remediation solutions provided
by each tool. Later, we conduct a study to assess the recommended PBKDF2
solution of SonarQube. Finally, we conclude and discuss the future work.

2 Related Work

Text password offers several deployment benefits compared to alternative schemes
such as graphical passwords and biometrics [19], thereby making it the most dom-
inant authentication method on the internet. However, multiple security stud-
ies reveal that passwords suffer from several security and usability issues. For
instance, users choose predictable passwords and reuse their passwords across
multiple accounts [29][22][20][33]. To improve the security of text passwords, re-
searchers explored diverse composition policies [37][36][35] and developed various
interventions [44][42][23][40][12]. Further, to prevent users from choosing leaked
passwords, free online services such as haveibeenpwned [12] are available that
check user-entered password against millions of passwords in breached databases.

Most of the research studies involving developers were conducted either to
understand how well developers implement security-related tasks or to test the
usability of the existing cryptography APIs. Storing password data is one of
the most common tasks carried out by software developers, however this task
is prone to security issues. Acar et al. [18] recruited 307 active GitHub users
and requested them to implement 3 security related tasks including a credential
storage task. The authors found that, of the 307 participants, only 162 (52.8%)
stored user credentials in a secure manner. Of the 145 participants who stored
password insecurely, 74 (51%) hashed the password without using a proper salt,
45 (31%) participants stored the password in plaintext, 19 (13.1%) participants
used a static salt instead of a random salt, 7 (4.8%) participants used MD5, while
6 (4.1%) used SHA-1 family hashes. Similar results were obtained in a recent
study conducted by Naiakshina et al. [30] involving 43 freelance developers. Of
the 43 participants, 10 (23.2%) participants used MD5, 8 (18.6%) participants
used Base64 encoding, 7 (16.3%) participants used Bcrypt, 7 (16.3%) partici-
pants used SHA-1 family hashes, 6 (13.9%) participants used symmetric encryp-
tion and 5 (11.6%) participants used PBKDF2. Further, only 11 participants
generated salt using strong PRNG (java.security.SecureRandom) whereas 2
participants used static salts, 1 participant used username and 1 generated salt
using weak PRNG (java.util.Random).

Acar et al. [17] conducted an online study with 256 developers to investigate
the usability of Python crypto-APIs. They found that poor documentation and
missing code examples caused developers to struggle with security. Wijayarathna
and Arachchilage [45] conducted a study with 10 developers to evaluate the

Title Suppressed Due to Excessive Length 5

usability of scrypt password hashing functionality of Bouncycastle API. The
authors identified 63 usability issues developers face while using the API for
secure password storage. Again, the key factors affecting the usability of API
were poor documentation, lack of examples and difficulty in identifying correct
parameters to use in API method invocation. Further, if the API is not properly
documented, then developers refer to unreliable third party sources and tutorials
which could put security of the entire application at risk [21].

Gorski et al. [24] conducted a controlled online experiment with 53 partici-
pants to study the effectiveness of API-integrated security advice, which informs
about an API misuse and places secure programming hints as guidance. They
found that 73% of the participants, who received the security warning and advice
fixed their insecure code. In this paper, we survey several SAST tools to under-
stand their detection capabilities and analyze their remediation fixes pertaining
to insecure password storage. To the best of our knowledge, there has not been
any study conducted to evaluate the recommended solutions of security testing
tools in the context of password storage.

3 Approach

To determine the detection capabilities of each tool in the context of insecure
password storage practices, we take the following two-step approach.
1. We refer to the online documentations of SpotBugs [1], SonarQube [9] and

CogniCrypt [14] list different security vulnerabilities that they attempt to
address along with remediation fixes. We focus only on vulnerabilities re-
lated to password storage listed in Table 1. The online documentation of
CryptoGuard is not available, hence we refer to its paper [34].

2. To confirm the detection of password storage vulnerabilities as listed in the
tool’s documentation, we run it on sample code shown in Figure 1. The
sample code consists of five methods, each demonstrating different vulnera-
bilities. The first four methods are derived from the CRYPTOAPI-BENCH
created recently in [34]. The first method hashPassword returns an inse-
cure SHA-1 hash of the password (CWE-327) and does not use salt (CWE-
759). The second method generateSalt uses weak PRNG (CWE-330) with
static seed and generates salt of insufficient size (4 bytes). The third method
getPBEParameterSpec derives the values of salt (CWE-760) and number
of iterations (CWE-916) required for PBEKeySpec from the user’s password.
The fourth method encryptPassword returns the encrypted version of the
password (CWE-257). We added the fifth method encodePassword which
returns base64 encoding of the password (CWE-261).

3.1 Tools

In this section, we describe each tool in more detail. The password storage vul-
nerabilities covered by each tool as per its online documentation are shown in
Table 2. The vulnerabilities detected after executing each tool on sample code
are summarized in Table 3. Both online documentation and execution results are
in concurrence with each other. We developed sample code using Eclipse IDE
(Oxygen 4.7.1a) and JDK 1.8 on Windows 10 (64-bit) machine. Also, we used

6 H.Tupsamudre et al.

1 private stat ic f ina l int SALT SIZE = 4 ;
2 private stat ic byte [] hashPassword (St r ing password) {
3 MessageDigest md = MessageDigest . g e t In s tance (”SHA−1”) ; //Weak Hash (CWE−327)
4 md. update (password . getBytes ()) ; //No Sa l t (CWE−759)
5 return md. d i g e s t () ;
6 }
7 private stat ic byte [] g ene ra t eSa l t () {
8 Random r = new Random (0) ; //Weak PRNG (CWE−330), Constant Seed 0
9 byte [] s a l t = new byte [SALT SIZE] ; // I n s u f f i c i e n t Sa l t Size

10 r . nextBytes (s a l t) ;
11 return s a l t ;
12 }
13 private stat ic PBEKeySpec getPBEParameterSpec (St r ing password) {
14 MessageDigest md = MessageDigest . g e t In s tance (”MD5”) ; //Pred ic tab l e Sa l t (CWE−760)
15 byte [] sa ltGen = md. d i g e s t (password . getBytes ()) ;
16 byte [] s a l t = new byte [SALT SIZE] ;
17 System . arraycopy (saltGen , 0 , s a l t , 0 , SALT SIZE) ;
18 int i t e r a t i o n = password . toCharArray () . l ength + 1 ; //Fewer I t e ra t i on s (CWE−916)
19 return new PBEKeySpec(password . toCharArray () , s a l t , i t e r a t i o n , 256) ;
20 }
21 private stat ic byte [] encryptPassword (St r ing password , S t r ing key) {
22 Cipher c iphe r = Cipher . g e t In s tance (”AES/CBC/PKCS5Padding”) ;
23 SecretKeySpec secretKey = new SecretKeySpec (key . getBytes () , ”AES”) ;
24 c iphe r . i n i t (Cipher .ENCRYPT MODE, secretKey) ;
25 return c iphe r . doFinal (password . getBytes ()) ; //Encryption (CWE−257)
26 }
27 private stat ic byte [] encodePassword (St r ing password) {
28 Base64 . Encoder encoder = Base64 . getEncoder () ;
29 return encoder . encode (password . getBytes ()) ; //Base64 (CWE−261)
30 }

Fig. 1. Sample code with password storage related vulnerabilities.
CWE-ID Bug SpotBugs SonarQube CryptoGuard CogniCrypt
CWE-327 Weak Hash

√ √ √ √

CWE-256 Plaintext × × × ×
CWE-257 Encryption × × × ×
CWE-261 Base64 × × × ×
CWE-916 Fewer Iterations × ×

√
×

CWE-759 No Salt × × × ×
CWE-760 Predictable Salt × ×

√ √

CWE-330, CWE-338 Weak PRNG
√ √ √

×
Table 2. Detection capabilities of different tools as per their online documentation.

the latest versions of all security testing tools.
SpotBugs (v4.0). SpotBugs is an open source tool that uses static analysis
approach to detect more than 400 vulnerabilities in Java applications. Find-
SecBugs (v1.10.1) is a plugin of SpotBugs which detects 135 different security
vulnerabilities using over 816 unique API signatures [1]. Both SpotBugs and
FindSecBugs are available as eclipse plugins. Running FindSecBugs on sample
code, revealed three vulnerabilities which are depicted in Table 3. It detects the
use of weak hash functions SHA-1 and MD5 at line numbers 3 and 14 respec-
tively. It also detects the usage of weak PRNG java.util.Random at line number
8. FindSecBugs displays error markers within Eclipse IDE to highlight the lines
of code with vulnerabilities and provides a brief description of each detected
vulnerability as shown in Table 3. To view more details about vulnerability and
suggested remediation, one can open the SpotBugs explorer and click on the
error marker. We note that the detailed description of vulnerabilities given by
FindSecBugs eclipse plugin matches exactly with its online documentation [1].

FindSecBugs recommends developers to use PBKDF2 instead of MD5 and
SHA-1. It provides two different implementations of PBKDF2, one using bouncy

Title Suppressed Due to Excessive Length 7

Code Line/Method Mnemonic Description
SpotBugs
3 Weak Hash This API SHA1 (SHA-1) is not a recommended cryptographic hash function
8 Weak PRNG This random generator (java.util.Random) is predictable
14 Weak Hash This API MD5 (MDX) is not a recommended cryptographic hash function
SonarQube
3 Weak Hash Make sure that hashing data is safe here.
8 Weak PRNG Make sure that using this pseudorandom number generator is safe here.
14 Weak Hash Make sure that hashing data is safe here.
CryptoGuard
hashPassword Weak Hash Violated Rule 2: Found broken hash function ***Constants: [“SHA1”]
generateSalt Weak PRNG Violated Rule 13: Untrused PRNG (java.util.Random)
getPBEParameterSpec Weak Hash Violated Rule 2: Found broken hash function ***Constants: [“MD5”]
getPBEParameterSpec Predictable Salt Violated Rule 9a: Found constant salts in code
getPBEParameterSpec Fewer Iterations Violated Rule 8a: Used < 1000 iteration for PBE
CogniCrypt
3 Weak Hash First parameter (with value “SHA1”) should be any of SHA-256, SHA-384, SHA-512
14 Weak Hash First parameter (with value “MD5”) should be any of SHA-256, SHA-384, SHA-512
19 Predictable Salt Second parameter was not properly generated as randomized.

Table 3. Vulnerabilities detected by different tools in sample code.

castle API and the other using cryptography API of Java 8 or later (refer to Fig-
ure 2). Although, both solutions employ NIST recommended HMAC-SHA-256
for password hashing, we found the following two issues in their implementation:
– They do not specify what the size of salt should be or how it should be gen-

erated. OWASP recommends at least 16 bytes unique random salt generated
using cryptographically secure PRNG java.security.SecureRandom.

– The number of iterations used in both examples is 4096. This was sufficient
according to older NIST 2010 guidelines [41], however it is not enough as
per the latest NIST 2017 guidelines [25]. The current recommendation is to
use at least 10,000 iterations.

/∗Solut ion (Using bouncy ca s t l e) : ∗/
public stat ic byte [] getEncryptedPassword (St r ing password , byte [] s a l t) {

PKCS5S2ParametersGenerator gen = new PKCS5S2ParametersGenerator (new SHA256Digest ()) ;
gen . i n i t (password . getBytes (”UTF−8”) , s a l t . getBytes () , 4096) ;
return ((KeyParameter) gen . generateDer ivedParameters (2 5 6)) . getKey () ;

}
/∗Solut ion (Java 8 and l a t e r) : ∗/
public stat ic byte [] getEncryptedPassword (St r ing password , byte [] s a l t) {

KeySpec spec = new PBEKeySpec(password . toCharArray () , s a l t , 4096 , 256 ∗ 8) ;
SecretKeyFactory f = SecretKeyFactory . g e t In s tance (”PBKDF2WithHmacSHA256”) ;
return f . g ene ra t eSec r e t (spec) . getEncoded () ;

}
Fig. 2. Solutions by FindSecBugs to replace weak hash functions MD5 and SHA-1.

Further, the PBEKeySpec solution uses 256 bytes key length when the rec-
ommendation is to use 256 bits [8]. FindSecBugs also recommends the use of
cryptographically secure PRNG instead of weak PRNG (line 8). Specifically, its
detailed reports says, “A quick fix could be to replace the use of java.util.Random
with something stronger, such as java.security.SecureRandom.”

SonarQube (v8.0). SonarQube is a more comprehensive code quality and vul-
nerability detection tool that uses static analysis and supports 27 programming
languages. It consists of 554 rules for detecting various security vulnerabilities in
Java applications [9]. SonarQube is available as free community edition and three
paid editions. It also comes in the form of eclipse plugin SonarLint, however we
found that some of the detection rules are not available in SolarLint. Hence, we

8 H.Tupsamudre et al.

used its standalone free community edition. The results obtained after running
SonarQube on sample code are shown in Table 3.

Similar to FindSecBugs, SonarQube also produces a detailed report along
with remediation fixes. It suggests the replacement of weak PRNG java.util.Random
(line 8) with cryptographically strong PRNG java.security.SecureRandom. It
also suggests replacing MD5 and SHA-1 with PBKDF2, and provides a list of
secure coding practices [7]. It uses NIST recommended HMAC-SHA-512 algo-
rithm for implementing PBKDF2, however we found the following problem with
its solution (Figure 3). It also employs PBEKeySpec constructor, but does not
specify the values for its parameters (salt, iterationCount and keyLength).

void f oo (char [] password , byte [] s a l t , int i t e rat ionCount , int keyLength) {
SecretKeyFactory f a c t o ry = SecretKeyFactory . g e t In s tance (”PBKDF2WithHmacSHA512”) ;
PBEKeySpec spec = new PBEKeySpec(password , s a l t , i t e rat ionCount , keyLength) ;
f a c t o ry . g ene ra t eSec r e t (spec) . getEncoded () ;

}

Fig. 3. Solution by SonarQube to replace weak hash functions MD5 and SHA-1.

CryptoGuard. CryptoGuard is an open source high precision cryptographic
vulnerabilities detection tool for Java applications [34]. It uses a set of fast and
highly accurate slicing algorithms to detect 16 different cryptographic vulner-
abilities such as predictable keys, constant passwords, custom trust manager,
insecure random number generators, static salts, insecure cryptographic hash,
and so on. It operates on source code, jar file and APK. The vulnerabilities de-
tected after running CryptoGuard on sample code is shown in Table 3. Instead
of reporting line numbers, CryptoGuard reports method names, which could be
cumbersome for developers to locate the vulnerabilities exactly. Although Cryp-
toGuard has more coverage in terms of detecting security issues pertaining to
password storage, it does not suggest any remediation fixes for them.

CogniCrypt (v1.0.0.201905151726). CogniCrypt is an open source security
vulnerabilities detection tool from the CROSSING research center of Technische
Universität Darmstadt [28]. It employs static analysis and its scope is limited to
the detection of inappropriate use of cryptography in Java applications. It comes
with an important code generator feature to help developers in generating the
right code for a given security requirement. The static analysis is based on rules
developed in a domain-specific CrySL language that specify the correct use of
an API [14]. The static analysis reports any deviations from the usage pattern
defined within the rules. CogniCrypt is available as eclipse plugin and generates
errors markers when it detects incorrect and insecure parts of code. Running
CogniCrypt on sample code produced three vulnerabilities as described in Ta-
ble 3. It detects the use of weak hash functions MD5 and SHA-1. However, its
remediation to use fast hash functions SHA-256, SHA-384 or SHA-512 results in
insecure password storage code. It also flags that salt is not generated randomly
for PBEKeySpec, however it does not specify how the salt should be generated.

Title Suppressed Due to Excessive Length 9

4 Study

CryptoGuard has comparatively good detection capabilities, however it does
not provide any recommendation to implement secure password storage. Cog-
niCrypt recommends the use of fast SHA-256 hash function, which is an insecure
solution in the context of password storage. Therefore, we do not include these
two tools in the study. SpotBugs recommends two PBKDF2 solutions, one us-
ing Bouncycastle API, and the other using HMAC-SHA-256 and PBEKeySpec
API. Recently, researchers found several usability issues with Bouncycastle API
[45], hence we do not consider it in our study. SonarQube also recommends a
similar solution using HMAC-SHA-512 and PBEKeySpec API. The constructor
of PBEKeySpec requires four parameters, namely user-supplied password, salt,
iterationCount and keyLength. SpotBugs sets the value of iterationCount to
4096 and keyLength to 256 bytes, however it leaves the choice of salt to the de-
velopers (Figure 2). On the other hand, SonarQube does not specify the values
of any of these three parameters (Figure 3). Therefore, we decided to evaluate
whether SonarQube’s detailed vulnerability report is helpful for developers to
implement secure password solution. We note that study results pertaining to
salt parameter are relevant to SpotBugs as well, since the salt parameter is un-
specified in its recommended solutions.
Methodology. For the study, we designed a simple password storage task as
described in [45]. We provided participants with a simple web application that
includes functionalities for registering users and login users. The web application
protected passwords using hashPassword function (given in Figure 1) which em-
ploys insecure SHA-1 hash algorithm (CWE 327). We requested participants to
secure passwords using the vulnerability report generated by SonarQube. The
report discourages the use of SHA-1 and provides a PBKDF2 implementation
using Java PBEKeySpec API (Figure 3). The report is similar to the one avail-
able online [7]. Further, participants were allowed to access any resource on the
internet in order to implement the recommended solution.
Setup. The study was setup on a dedicated Windows 10 (64-bit) machine. We
created the web application project in Eclipse Oxygen (4.7.1a) using JDK 1.8.
The function hashPassword was present in a separate source file, so that par-
ticipants could focus on the task. Participants were provided the vulnerability
report of SonarQube and were allowed to use Chrome browser for implementing
the solution. At the end of the task, we stored the browsing history of each par-
ticipant. For the implementation to work properly, participants were required to
choose three parameters (salt, iterationCount and keyLength) of PBEKeySpec.
Result. We recruited 8 developers within our organization for the study. The
information profile about each participant, their choices for three parameters
salt, iterationCount and keyLength of PBEKeySpec and the time required for
implementing the solution are shown in Table 4. We found that only two par-
ticipants (P2, P7) chose the parameters as recommended by NIST as they had
relevant experience of password storage task. These participants were aware of
PBKDF2 specification and generated a unique 16 bytes salt using cryptographi-
cally secure PRNG java.security.SecureRandom, set iterationCount to 10,000

10 H.Tupsamudre et al.

and keyLength to 256 bits. Of the remaining 6 participants, one participant (P5)
generated a secure unique random salt for each password, four participants used
a constant salt and one participant used userid as salt. Participants P4 and P8
set the value of iterationCount to 10,000 whereas the remaining participants 4
participants chose insufficient number of iterations.
Most of the participants chose a correct value of keyLength (256 bits). Analysis
of browsing history of these participants reveal that they referred to the OWASP
web page [8] (link was provided by SonarQube in its vulnerability report) which
recommends the value of key length to be 256 bits, however it does not specify
the number of iterations. Interestingly, the same page also recommends the size
of salt to be 32 bytes. Four participants browsed Oracle’s documentation for
PBEKeySpec, however it does not recommend any values for the parameters.
Three participants searched for the concept of salt (wikipedia). The concept of
salt is not widely known, which was also observed in the previous study [31].
We also tested the submitted implementation of each participant using Sonar-
Qube. However, none of the submitted solutions were flagged for vulnerabilities
by SonarQube which is a serious concern. Thus, detecting vulnerabilities just
using method signatures is not enough.
Limitations. We found that developers chose incorrect parameters and imple-
mented insecure password storage when the security testing tools do not provide
specific recommendations. Our observation is based on a convenience sample of
8 developers. However, similar observations were made in a recent study [45]
pertaining to usability of cryptography APIs. Their study results [45] also show
that developers have difficulty in identifying correct parameters to use in Boun-
cycastle API method invocation.

Participant Development Stored Pass salt iteration keyLength Time
Experience -words Before Count (in min)

P1 5.7 years × 2 bytes (constant value) 50 256 25 min
P2 7.6 years

√
16 bytes (unique SecureRandom) 10,000 256 12 min

P3 6.8 years
√

Userid 12 256 29 min
P4 2.8 years × 11 bytes (constant value) 10,000 256 27 min
P5 3 years

√
16 bytes (unique SecureRandom) 0 0 32 min

P6 0.6 years × 8 bytes (constant value) 20 222 30 min
P7 15 years

√
16 bytes (unique SecureRandom) 10,000 256 9 min

P8 3 years × 16 bytes (constant value) 10,000 256 35 min

Table 4. Participants information and their choice of parameters for PBEKeySpec.

5 Conclusion and Future Work

In this paper, we surveyed four open-source security testing tools (SpotBugs,
SonarQube, CryptoGuard and CogniCrypt) to understand their detection capa-
bilities pertaining to password storage vulnerabilities. We found that Crypto-
Guard has comparatively good coverage, however it does not specify any reme-
diation to fix the insecure password storage code. CogniCrypt detects the use
of weak hash functions (MD5 and SHA-1), however it suggests SHA-256 hash
function, which is insecure in the context of passwords. Both SpotBugs and

Title Suppressed Due to Excessive Length 11

SonarQube recommend the use of PBKDF2 and provide example solutions us-
ing PBEKeySpec API. However, SonarQube leaves the equally important choice
of PBKDF2 parameters (salt, iterationCount and keyLength) to developers.
Further, SpotBugs solution uses 4096 iterations which is insufficient as per the
latest NIST 2017 guidelines [25] and leaves the important choice of salt parame-
ter to developers. In our study involving 8 developers who were tasked with im-
plementing SonarQube’s recommended solution, we found that 6 of them chose
insecure values for at least one PBKDF2 parameter. Therefore, it is crucial that
security testing tools provide specific password storage solutions to developers.

We note that the insecure password storage is just one of the many imple-
mentation issues associated with the code that handles passwords. Other issues
include hard-coded password (CWE-259), password in configuration file (CWE-
260) and exposure of passwords in log files (CWE-200). Further, several com-
mercial SAST tools such as Synopsys Coverity and HP Fortify are available. In
future, we aim to compare the detection capabilities and remediation fixes of
open-source as well as commercial tools with regard to insecure password code.

References

1. Bugs Patterns. https://find-sec-bugs.github.io/bugs.htm, Last accessed 19
December 2019

2. Class PBEKeySpec. https://docs.oracle.com/javase/7/docs/api/javax/

crypto/spec/PBEKeySpec.html, Last accessed 19 December 2019
3. Common Weakness Enumeration. https://cwe.mitre.org/, Last accessed 19 De-

cember 2019
4. Cryptographic Storage. https://cheatsheetseries.owasp.org/cheatsheets/

Cryptographic_Storage_Cheat_Sheet.html, Last accessed 19 December 2019
5. CryptoGuard. https://github.com/CryptoGuardOSS/cryptoguard, Last accessed

19 December 2019
6. Eclipse CogniCrypt. https://www.eclipse.org/cognicrypt/, Last accessed 19

December 2019
7. Hashing data is security-sensitive. https://rules.sonarsource.com/java/

RSPEC-4790, Last accessed 19 December 2019
8. Hashing Java. https://www.owasp.org/index.php/Hashing_Java, Last accessed

19 December 2019
9. Jave 554 Rules. https://rules.sonarsource.com/java/, Last accessed 19 De-

cember 2019
10. OWASP Top 10 - 2017. https://www.owasp.org/images/7/72/OWASP_Top_

10-2017_%28en%29.pdf.pdf, Last accessed 19 December 2019
11. Password Storage. https://cheatsheetseries.owasp.org/cheatsheets/

Password_Storage_Cheat_Sheet.html, Last accessed 19 December 2019
12. Pwned websites- Breached websites that have been loaded into Have I Been Pwned.

https://haveibeenpwned.com/PwnedWebsites, Last accessed 19 December 2019
13. SpotBugs. https://spotbugs.github.io/, Last accessed 19 December 2019
14. The CrySL Language. https://www.eclipse.org/cognicrypt/documentation/

crysl/, Last accessed 19 December 2019
15. Your teammate for Code Quality and Security. https://www.sonarqube.org/,

Last accessed 19 December 2019

https://find-sec-bugs.github.io/bugs.htm
https://docs.oracle.com/javase/7/docs/api/javax/crypto/spec/PBEKeySpec.html
https://docs.oracle.com/javase/7/docs/api/javax/crypto/spec/PBEKeySpec.html
https://cwe.mitre.org/
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://github.com/CryptoGuardOSS/cryptoguard
https://www.eclipse.org/cognicrypt/
https://rules.sonarsource.com/java/RSPEC-4790
https://rules.sonarsource.com/java/RSPEC-4790
https://www.owasp.org/index.php/Hashing_Java
https://rules.sonarsource.com/java/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://haveibeenpwned.com/PwnedWebsites
https://spotbugs.github.io/
https://www.eclipse.org/cognicrypt/documentation/crysl/
https://www.eclipse.org/cognicrypt/documentation/crysl/
https://www.sonarqube.org/

12 H.Tupsamudre et al.

16. Anatomy of a password disaster – Adobe’s giant-sized crypto-
graphic blunder. https://nakedsecurity.sophos.com/2013/11/04/

anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/

(2019)

17. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L.,
Stransky, C.: Comparing the Usability of Cryptographic APIs. In: 2017
IEEE Symposium on Security and Privacy (SP). pp. 154–171 (May 2017).
https://doi.org/10.1109/SP.2017.52

18. Acar, Y., Stransky, C., Wermke, D., Mazurek, M.L., Fahl, S.: Security Devel-
oper Studies with GitHub Users: Exploring a Convenience Sample. In: Thirteenth
Symposium on Usable Privacy and Security (SOUPS 2017). pp. 81–95. USENIX
Association, Santa Clara, CA (Jul 2017), https://www.usenix.org/conference/
soups2017/technical-sessions/presentation/acar

19. Bonneau, J., Herley, C., v. Oorschot, P.C., Stajano, F.: The quest to replace pass-
words: A framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy. pp. 553–567 (May 2012).
https://doi.org/10.1109/SP.2012.44

20. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The Tangled Web of
Password Reuse. In: NDSS. vol. 14, pp. 23–26 (2014)

21. Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., Fahl, S.:
Stack overflow considered harmful? the impact of copy paste on android application
security. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 121–136
(May 2017). https://doi.org/10.1109/SP.2017.31

22. Florencio, D., Herley, C.: A Large-scale Study of Web Password Habits.
In: Proceedings of the 16th International Conference on World Wide
Web. pp. 657–666. WWW ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1242572.1242661, http://doi.acm.org/10.1145/

1242572.1242661

23. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Improving Text Pass-
words Through Persuasion. In: Proceedings of the 4th Symposium on Us-
able Privacy and Security. pp. 1–12. SOUPS ’08, ACM, New York, NY, USA
(2008). https://doi.org/10.1145/1408664.1408666, http://doi.acm.org/10.1145/
1408664.1408666

24. Gorski, P.L., Iacono, L.L., Wermke, D., Stransky, C., Möller, S., Acar, Y., Fahl,
S.: Developers Deserve Security Warnings, Too: On the Effect of Integrated Se-
curity Advice on Cryptographic API Misuse. In: Fourteenth Symposium on Us-
able Privacy and Security (SOUPS 2018). pp. 265–281. USENIX Association,
Baltimore, MD (Aug 2018), https://www.usenix.org/conference/soups2018/

presentation/gorski

25. Grassi, P.A., Fenton, J.L., Newton, E.M., Perlner, R.A., Regenscheid, A.R., Burr,
W.E., Richer, J.P., Lefkovitz, N.B., Danker, J.M., Choong, Y.Y., Greene, K.K.,
Theofanos, M.F.: Digital identity guidelines. NIST special publication 800, 63–3
(2017). https://doi.org/10.6028/NIST.SP.800-63b

26. Green, M., Smith, M.: Developers are Not the Enemy!: The Need for
Usable Security APIs. IEEE Security Privacy 14(5), 40–46 (Sep 2016).
https://doi.org/10.1109/MSP.2016.111

27. Kamp, P.H.: LinkedIn Password Leak: Salt Their Hide. Queue 10(6), 20:20–20:22
(Jun 2012). https://doi.org/10.1145/2246036.2254400, http://doi.acm.org/10.

1145/2246036.2254400

https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://doi.org/10.1109/SP.2017.52
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1145/1242572.1242661
http://doi.acm.org/10.1145/1242572.1242661
http://doi.acm.org/10.1145/1242572.1242661
https://doi.org/10.1145/1408664.1408666
http://doi.acm.org/10.1145/1408664.1408666
http://doi.acm.org/10.1145/1408664.1408666
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1145/2246036.2254400
http://doi.acm.org/10.1145/2246036.2254400
http://doi.acm.org/10.1145/2246036.2254400

Title Suppressed Due to Excessive Length 13

28. Krüger, S., Nadi, S., Reif, M., Ali, K., Mezini, M., Bodden, E., Göpfert, F.,
Günther, F., Weinert, C., Demmler, D., Kamath, R.: CogniCrypt: Supporting De-
velopers in Using Cryptography. In: Proceedings of the 32Nd IEEE/ACM Inter-
national Conference on Automated Software Engineering. pp. 931–936. ASE 2017,
IEEE Press, Piscataway, NJ, USA (2017), http://dl.acm.org/citation.cfm?id=
3155562.3155681

29. Morris, R., Thompson, K.: Password Security: A Case History. Commun. ACM
22(11), 594–597 (Nov 1979). https://doi.org/10.1145/359168.359172, http://doi.
acm.org/10.1145/359168.359172

30. Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., Smith, M.: "If
You Want, I Can Store the Encrypted Password": A Password-Storage Field
Study with Freelance Developers. In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. pp. 140:1–140:12. CHI ’19, ACM, New
York, NY, USA (2019). https://doi.org/10.1145/3290605.3300370, http://doi.

acm.org/10.1145/3290605.3300370

31. Naiakshina, A., Danilova, A., Tiefenau, C., Herzog, M., Dechand, S., Smith,
M.: Why Do Developers Get Password Storage Wrong?: A Qualitative Usabil-
ity Study. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. pp. 311–328. CCS ’17, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3133956.3134082, http://doi.acm.org/10.1145/
3133956.3134082

32. Naiakshina, A., Danilova, A., Tiefenau, C., Smith, M.: Deception Task Design in
Developer Password Studies: Exploring a Student Sample. In: Fourteenth Sym-
posium on Usable Privacy and Security (SOUPS 2018). pp. 297–313. USENIX
Association, Baltimore, MD (Aug 2018), https://www.usenix.org/conference/
soups2018/presentation/naiakshina

33. Pearman, S., Thomas, J., Naeini, P.E., Habib, H., Bauer, L., Christin, N., Cranor,
L.F., Egelman, S., Forget, A.: Let’s Go in for a Closer Look: Observing Passwords
in Their Natural Habitat. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 295–310. CCS ’17, ACM, New
York, NY, USA (2017). https://doi.org/10.1145/3133956.3133973, http://doi.

acm.org/10.1145/3133956.3133973

34. Rahaman, S., Xiao, Y., Afrose, S., Shaon, F., Tian, K., Frantz, M., Kantarcioglu,
M., Yao, D.D.: CryptoGuard: High Precision Detection of Cryptographic Vulnera-
bilities in Massive-sized Java Projects. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2455–2472. CCS
’19, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3345659,
http://doi.acm.org/10.1145/3319535.3345659

35. Segreti, S.M., Melicher, W., Komanduri, S., Melicher, D., Shay, R., Ur, B.,
Bauer, L., Christin, N., Cranor, L.F., Mazurek, M.L.: Diversify to Survive: Mak-
ing Passwords Stronger with Adaptive Policies. In: Thirteenth Symposium on
Usable Privacy and Security (SOUPS 2017). pp. 1–12. USENIX Association,
Santa Clara, CA (Jul 2017), https://www.usenix.org/conference/soups2017/

technical-sessions/presentation/segreti

36. Shay, R., Kelley, P.G., Komanduri, S., Mazurek, M.L., Ur, B., Vidas, T., Bauer,
L., Christin, N., Cranor, L.F.: Correct Horse Battery Staple: Exploring the Us-
ability of System-assigned Passphrases. In: Proceedings of the Eighth Symposium
on Usable Privacy and Security. pp. 7:1–7:20. SOUPS ’12, ACM, New York, NY,
USA (2012). https://doi.org/10.1145/2335356.2335366, http://doi.acm.org/10.
1145/2335356.2335366

http://dl.acm.org/citation.cfm?id=3155562.3155681
http://dl.acm.org/citation.cfm?id=3155562.3155681
https://doi.org/10.1145/359168.359172
http://doi.acm.org/10.1145/359168.359172
http://doi.acm.org/10.1145/359168.359172
https://doi.org/10.1145/3290605.3300370
http://doi.acm.org/10.1145/3290605.3300370
http://doi.acm.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
http://doi.acm.org/10.1145/3133956.3134082
http://doi.acm.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3133956.3133973
http://doi.acm.org/10.1145/3133956.3133973
http://doi.acm.org/10.1145/3133956.3133973
https://doi.org/10.1145/3319535.3345659
http://doi.acm.org/10.1145/3319535.3345659
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti
https://doi.org/10.1145/2335356.2335366
http://doi.acm.org/10.1145/2335356.2335366
http://doi.acm.org/10.1145/2335356.2335366

14 H.Tupsamudre et al.

37. Shay, R., Komanduri, S., Durity, A.L., Huh, P.S., Mazurek, M.L., Segreti, S.M.,
Ur, B., Bauer, L., Christin, N., Cranor, L.F.: Can Long Passwords Be Se-
cure and Usable? In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. pp. 2927–2936. CHI ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2556288.2557377, http://doi.acm.org/10.1145/
2556288.2557377

38. Sprengers, M.: GPU-based Password Cracking. Master’s thesis, Radboud Univer-
sity Nijmegen Faculty of Science Kerckhoffs Institute (2011)

39. Stobert, E., Biddle, R.: The Password Life Cycle: User Behaviour in Managing
Passwords. In: 10th Symposium On Usable Privacy and Security (SOUPS 2014).
pp. 243–255. USENIX Association, Menlo Park, CA (Jul 2014), https://www.

usenix.org/conference/soups2014/proceedings/presentation/stobert

40. Tupsamudre, H., Dixit, A., Banahatti, V., Lodha, S.: Pass-Roll and Pass-Scroll:
New Graphical User Interfaces for Improving Text Passwords. In: EuroUSEC
(2017)

41. Turan, M.S., Barker, E., Burr, W., Chen, L.: Recommendation for password-based
key derivation. NIST special publication 800, 132 (2010)

42. Ur, B., Alfieri, F., Aung, M., Bauer, L., Christin, N., Colnago, J., Cranor, L.F.,
Dixon, H., Emami Naeini, P., Habib, H., Johnson, N., Melicher, W.: Design
and Evaluation of a Data-Driven Password Meter. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. pp. 3775–3786. CHI
’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3025453.3026050,
http://doi.acm.org/10.1145/3025453.3026050

43. Ur, B., Noma, F., Bees, J., Segreti, S.M., Shay, R., Bauer, L., Christin, N., Cranor,
L.F.: ”I Added ’!’ at the End to Make It Secure”: Observing Password Creation in
the Lab. In: Eleventh Symposium On Usable Privacy and Security (SOUPS 2015).
pp. 123–140. USENIX Association, Ottawa (Jul 2015), https://www.usenix.org/
conference/soups2015/proceedings/presentation/ur

44. Wheeler, D.L.: zxcvbn: Low-budget password strength estimation. In: 25th
USENIX Security Symposium (USENIX Security 16). pp. 157–173. USENIX
Association, Austin, TX (Aug 2016), https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/wheeler

45. Wijayarathna, C., Arachchilage, N.A.G.: Why Johnny Can’t Store Passwords
Securely?: A Usability Evaluation of Bouncycastle Password Hashing. In: Pro-
ceedings of the 22nd International Conference on Evaluation and Assessment in
Software Engineering 2018. pp. 205–210. EASE’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3210459.3210483, http://doi.acm.org/10.1145/
3210459.3210483

https://doi.org/10.1145/2556288.2557377
http://doi.acm.org/10.1145/2556288.2557377
http://doi.acm.org/10.1145/2556288.2557377
https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://www.usenix.org/conference/soups2014/proceedings/presentation/stobert
https://doi.org/10.1145/3025453.3026050
http://doi.acm.org/10.1145/3025453.3026050
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://www.usenix.org/conference/soups2015/proceedings/presentation/ur
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://doi.org/10.1145/3210459.3210483
http://doi.acm.org/10.1145/3210459.3210483
http://doi.acm.org/10.1145/3210459.3210483

	Fixing the Fixes: Assessing the Solutions of SAST Tools for Securing Password Storage

